激光捕获显微切割
光、激光生物医疗技术
激光捕获显微切割:即Laser capture microdissection (LCM) technology,是在不破坏组织结构,保存要捕获的细胞和其周围组织形态完整的前提下,直接从冰冻或石蜡包埋组织切片中获取目标细胞 ,通常用于从组织中精确地分离一个单一的细胞。
背景
机体组织包含有上百种不同的细胞,这些细胞各自与周围的细胞、基质、血管、腺体、炎症细胞或免疫细胞相互粘附。在正常或发育中的组织器官内,细胞内信号、相邻细胞的信号以及体液刺激作用于特定的细胞,使这些细胞表达不同的基因并且发生复杂的分子变化。在病理状态下,如果同一类型的细胞发生了相同的分子改变,则这种分子改变对于疾病的发生可能起着关键性的作用。然而,发生相同分子改变的细胞可能只占组织总体积的很小一部分;同时,研究的目标细胞往往被其它组织成分所环绕。为了对疾病发生过程中的组织损害进行分子水平分析,分离出纯净的目标细胞就显得非常必要。1996年,美国国立卫生院(NIH)国家肿瘤研究所的[2]开发出激光捕获显微切割技术(Laser capture microdissection ,LCM ),次年,美国Arcturus Engineering公司成功研制激光捕获显微切割系统,并实现商品化销售。应用该技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。这项技术现已成为美国“肿瘤基因组解剖计划”的一项支撑技术。
原理
LCM的基本原理是通过一低能红外激光脉冲激活热塑膜———乙烯乙酸乙烯酯(ethylene vinylacetate,EVA)膜(其最大吸收峰接近红外激光波长),在直视下选择性地将目标细胞或组织碎片粘到该膜上。LCM 系统包括倒置显微镜、固态红外激光二极管、激光控制装置、控制显微镜载物台(固定载玻片)的操纵杆、电耦合相机及彩色显示器。用于捕获目标细胞的热塑膜直径通常为6mm,覆在透明的塑料帽上,后者恰与后继实验所用的标准 0.5ml离心管相匹配。
机械臂悬挂控制覆有热塑膜的塑料帽,放到脱水组织切片上的目标部位。显微镜直视下选择目标细胞,发射激光脉冲,瞬间升温使 )EVA膜局部熔化。熔化的EVA膜渗透到切片上极微小的组织间隙中,并在几毫秒内迅速凝固。组织与膜的粘合力超过了其与载玻片间的粘合力,从而可以选择性地转移目标细胞。激光脉冲通常持续0.5~5.0毫秒,并且可在整个塑料帽表面进行多次重复,从而可以迅速分离大量的目标细胞。将塑料帽盖在装有缓冲液的离心管上,将所选择的细胞转移至离心管中,从而可以分离出感兴趣的分子进行实验。
EVA膜约100~200μm厚,能够吸收激光产生的绝大部分能量,在瞬间将激光束照射区域的温度提高到90°C,保持数毫秒后又迅速冷却,保证了生物大分子不受损害。采用低能量红外激光的同时也可避免损伤性光化学反应的发生。
LCM优缺点
LCM最显著的优点在于其迅速、准确和多用途的特性。结合组织结构特点以及所需的切割精确度,通过选择激光束的直径大小,可以迅速获取大量的目标细胞。LCM与以显微操作仪为基础的显微切割技术相比,具有以下优点:(1)分离细胞速度快,无需精巧的操作技能;(2)捕获细胞和剩余组织的形态学特征均保持完好,可以较好地控制捕获细胞的特异性;(2) 捕获细胞与塑料帽结合紧密,减少了组织损失的风险。相比而言,除了激光切割弹射微分离系统以经染色的用于存档的切片也可被成功进行显微切割。
尽管 LCM 应用广泛,但对于常规染色、固定且不加盖玻片的组织切片,其视觉分辨率受到很大限制。而对于那些本身缺乏一定结构特点的复杂组织(如淋巴组织,广泛浸润的腺癌等),要准确分离出某一类细胞几乎是不可能的。Fend等通过采用特殊染色,尤其是免疫组化方法,使目标细胞或想要去除的细胞变得更加醒目,从而解决了上述难题。
应用 LCM,偶尔会出现无法将选择的细胞从切片上移走的情况,出现这种结果有两种原因:(1) 细胞与热塑膜之间的粘合力不足,通常是由于组织未完全脱水或激光的能量设置过低造成的;(2)组织切片与载玻片间的粘合力过强,通常发生在显微切割干燥时间过长的冰冻切片。针对不同样本组织(包括免疫组化染色的组织切片),一些研究小组分别详尽报道了采用适合的处理方法,以达到最佳的显微切割条件。
应用
LCM较以往的显微切割技术有了突破性的进展,现已广泛应用于肿瘤研究,包括前列腺癌、肾癌、肺癌、甲状腺癌、食管癌 、胃癌、肝癌、胆管癌、结肠癌 、乳腺癌、胶质瘤 、恶性胸膜间皮瘤、淋巴瘤、卵巢癌等。此外,LCM还成功应用于其它一些疾病的研究中,如Crohn病 、肌萎缩性侧索硬化症 、子宫内膜异位症、获得性免疫缺陷综合征、结核病、丙型肝炎等。而应用LCM所分离的组织也多种多样,包括单个细胞、单一细胞群(主要是癌巢)、血管等类型。
展 望
LCM成功解决了组织异质性问题,且具有迅速、准确等诸多优点,已被广泛应用于肿瘤等疾病基因水平的研究中,并显示出了良好的应用前景。但今后可能还需要以下几个主要方面的发展和完善:理论上,除上述组织及细胞以外,LCM还可应用于其他所有组织细胞(如脾脏巨噬细胞、肝脏Kuffer细胞等)的分离,但其各自的切片制备、染色等技术方法尚需要进行探索;开发相应的应用程序,仅需输入目标细胞或组织的特异性参数即可实现计算机自动控制LCM,从而大大缩减所需的人力和时间;提高捕获单个细胞的精确度,以减少非目标组织的沾染;进一步优化快速免疫组化染色的步骤,改进DNA和 RNA抽提技术,实现从少量捕获细胞或组织中获得高质量的核酸。
最新修订时间:2024-03-30 11:16
目录
概述
背景
参考资料