热力学极限
物理学术语
热力学极限是指粒子数(或体积)趋向无穷大时的极限。一般宏观物体包含了10^23个粒子,可以认为是满足热力学极限的。
应用
热力学极限是一个统计物理中的常用假设,很多结论只有在热力学极限下才会成立,例如:杨振宁李政道证明相变只有在热力学极限下才会发生;熵与能量等物理量的广延性只有在热力学极限下才成立。
热力学极限也是玻尔兹曼统计的假设前提之一。
麦克斯韦-玻尔兹曼统计
麦克斯韦—玻尔兹曼统计是描述独立定域粒子体系分布状况的统计规律。
所谓独立定域粒子体系指的是这样一个体系:粒子间相互没有任何作用,互不影响,并且各个不同的粒子之间都是可以互相区别的,在量子力学背景下只有定域分布粒子体系中的粒子是可以相互区分的,因此这种体系被称为独立定域粒子体系。而在经典力学背景下,任何一个粒子的运动都是严格符合力学规律的,有着可确定的运动轨迹可以相互区分,因此所有经典粒子体系都是定域粒子体系,在近独立假设下,都符合麦克斯韦-玻尔兹曼统计
因而符合麦克斯韦—玻尔兹曼统计分布的粒子,当他们处于某一分布(“某一分布”指这样一种状态:即在能量为的能级上同时有个粒子存在着,不难想象,当从宏观观察体系能量一定的时候,从微观角度观察体系可能有很多种不同的分布状态,而且在这些不同的分布状态中,总有一些状态出现的几率特别的大,而其中出现几率最大的分布状态被称为最可几分布)时,体系总状态数为:
近独立粒子统计力学
近独立粒子统计指的是统计力学中对粒子的特定描述,它的特点是不考虑粒子间的相互作用。近独立粒子三种主要模式是:
这三种统计的不同之处在于:
数学上使用可交换算符描述玻色子,反交换算符描述费米子,所以造成了以上的差别。
参考资料
最新修订时间:2022-08-25 18:25
目录
概述
应用
麦克斯韦-玻尔兹曼统计
参考资料