热力燃烧
净化方法
是把可燃的有害气体的温度提高到反应温度,使其进行氧化分解的净化方法。这里所说的以热力燃烧净化有害气体时并无火焰,而是依靠热力,即用提高温度的方法,把废气中可燃的有害组分氧化销毁。
基本理论
火焰传播理论
在热力燃烧过程中,一般认为,只有燃烧室的温度维持在760~820℃,驻留时间为0.5s时,有机物的燃烧才能比较完全。而达到这个温度范围是依靠火焰传播过程来实现的。火焰传播的理论分为两大类。
热传播理论
这类理论认为:火焰传播是依靠燃烧时所放出的热量加热周围的气体,使其达到燃烧所需要的温度而实现的。因此,能否实现火焰传播主要与三个方面的因素有关:
① 混合气体中的含氧量;
② 混合气体中含有可燃组分的浓度;
③ 辅助燃料燃烧过程中所放出的热量。当燃烧过程中放出的热量不足以使周围的气体达到燃烧所需要的温度,火焰自然不能向外传播;当助燃废气中的含氧量不足,燃烧过程难以进行,火焰也不能传播出去。例如:丙烷气体在空气当中很容易燃烧,但在氧和氮各占12%和88%的气体中,丙烷燃烧非常困难。此外,混合气体中可燃组分的浓度与火焰能否传播有着紧密的联系。浓度过低,燃烧过程不能实现;浓度过高时,由于没有足够的氧而使得废气不能在正常的着火温度下产生燃烧反应,因而火焰也得不到传播。人们将这种能够维持火焰传播的浓度范围称为爆炸极限。使用燃烧法处理各种有机废气的过程中,爆炸极限的范围是至关重要的。
该种理论认为:在燃烧室中,火焰之所以能够进行很快的氧化反应,就是因为火焰中存在着大量活性很大的自由基。由于自由基是具有不饱和价的自由原子或原子团,极易同其他的原子或自由基发生连续的连锁反应,而使得火焰得以传播。
燃烧条件
热力燃烧多用于处理可燃组分含量较低的废气。在热力燃烧中,要净化的废气不是作为维持燃烧所用的燃料,而是燃烧的对象。在含氧量足够时,还可作为助燃气体。热力燃烧可在540~820℃进行。
在热力燃烧中,空气中有害的可燃组分经氧化作用生成CO2和H2O。大部分物质在温度760~820℃和驻留时间0.1~0.3秒内即可变化完全,大多数碳氢化合物在温度590~650℃就很快地被氧化,但CO-CO2的氧化过程却需要较高的温度和较长的驻留时间。一般热力燃烧的反应温度为760~820℃,这就需要用辅助燃料燃烧供热,以达到这个反应温度。辅助燃料不能直接与全部要净化处理的废气混合,因为这样会使其浓度低于燃烧下限,以致不能维持燃烧。通常先用一半的废气(含有足够氧气时)使辅助燃料燃烧达到1370℃左右,再与其余废气混合达到760℃的反应温度。一般燃烧炉设计的总驻留时间为0.5秒。
热力燃烧的条件是废气与氧气在反应温度下有充分的接触时间。这就是在供氧充分的情况下,热力燃烧的三个要素,即反应温度、驻留时间、湍流混合。这“三T条件”从定性来看,是互相关联的,在一定范围内改变一个条件,其他两个条件则可降低要求。例如,提高反应温度可以缩短驻留时间,并可降低湍流混合的要求。同样,充分湍流混合也可降低对温度和时间的要求。大多数碳氢化合物每1%爆炸下限浓度所含热值,大约可使气体升温15.3℃。采用热力燃烧时,一般应将废气的可燃组分浓度控制在25%爆炸下限,以防止由于混合物比例及爆炸范围的偶然变化,可能引起的爆炸或回火。
过程
热力燃烧是将辅助燃料燃烧产生的高温燃气与有毒有害废气混合,使其温度达到可燃组分的自燃点以上,并使有毒有害废气在燃烧炉中驻留一段时间,以完成热化学转化过程。若在有毒有害物质的废气中含有足够的氧,就可以用部分废气助燃以辅助燃料燃烧,这部分废气被称为助燃废气。辅助燃料燃烧后产生的高温燃气再与其余部分废气混合,进而使混合气体达到其中的有毒有害物质氧化分解的温度。如果有毒有害物质含于惰性气体中,在燃烧净化时,则需专门提供空气或氧气助燃。
热力燃烧可分为三个过程:
① 辅助燃料用废气或空气助燃燃烧—提供热量;
② 废气与高温燃气的混合—达到反应温度;
③ 废气中可燃有害组分的氧化分解—保持废气于反应温度所需的驻留时间。
设备
流程
热力燃烧法的另一个要点,是不能把所需燃料与全部废气相混合,而是用一部分废气来助燃,然后把另一部分废气(旁通废气)与高温燃气混合,以达到反应温度。因为使废气升温至760℃所需的燃料,不能维持全部废气处于燃烧状态,维持稳定燃烧的温度不能低于1 150~1 320℃,否则就会熄火。热力燃烧的“三T条件”中的湍流混合,就是希望旁通废气与高温燃气处于较强的湍流状态,很快地达到分子混合水平,使废气中有害组分的分子能得到升温和氧化。
设备
热力燃烧炉的主体结构分为燃烧器和燃烧室两部分。
燃烧器的作用是通过燃烧辅助燃料以产生高温燃气,而燃烧室是使高温燃气与冷废气(旁通废气)湍流混合达到反应温度,并保持所需的驻留时间。已销毁过而含有大量热量的废气通过热回收设施后排空。按燃烧器不同形式,热力燃烧炉可以分为配焰燃烧器系统和离焰
燃烧器系统两大类。
(1) 配焰燃烧器系统
配焰燃烧器是将燃烧火焰配布成许多小火焰,布点成线,使废气分别围绕着这些小火焰点流过去,以此达到迅速完全的湍流混合。由于废气与高温燃气在辅助燃料所燃烧的火焰处就开始分成许多小股混合的情况,有利于在短距离内的混合。该系统混合时间短,使燃烧反应时间相对较多,燃烧反应完全,净化效率高。燃烧器火焰间距一般为30cm。燃烧室直径为60~300cm,其尺寸要保证气体有足够的停留时间(一般为0.3~0.5s)和适当的湍流度(一般气体速度达4.5-7.5m/s),长径比取2~6。配焰燃烧系统不适用于含氧低于16%,需补充空气助燃的缺氧废气;不适用于含有焦油、颗粒物等易沉积于燃烧器的废气处理;不适用于燃料油供热,仅适用于燃料气供热。
(2) 离焰燃烧器系统
这种燃烧器是燃料与助燃空气(或废气)先通过燃烧器燃烧,产生高温燃气,然后与废气(旁通废气)在燃烧室混合,氧化销毁废气。其特点是高温燃气的产生与混合,是分开进行的。离焰燃烧器由于没有像配焰燃烧器那样把火焰与废气一起分成许多小股,高温燃气与废气(旁通废气)的混合不如配焰燃烧器好,横向混合往往较差,可采用轴向火焰喷射混合、切向或径向进废气与燃料气、燃烧室设置挡板等改进措施,还要保持0.5s左右的停留时间。离焰燃烧器可以烧燃料气或燃料油,可用废气或空气助燃,火焰大小容易调节,制作较简单。
(3) 利用锅炉燃烧室进行热力燃烧
很多工厂采用加热炉或锅炉燃烧室作为热力燃烧的设备。由于大多数加热炉或锅炉燃烧室的温度都超过1000℃,停留时间在0.5~3s,基本能满足热力燃烧的“三T”条件。与前述的专用热力燃烧炉相比,利用锅炉兼作燃烧净化炉是一个经济而有效的方法,其设备投资费用大大减少,运行费用和辅助燃料消耗均大为减少,无需再考虑热量回收和利用的问题。不足之处是如果废气流量过大,可使传热效率下降、锅炉消耗的燃料增加和压降增大;锅炉的燃烧器、传热管可能因黏附废气不完全燃烧所产生的残留物而使维护费用增加;若用蒸汽的时间与废气处理的时间不一致,则会造成浪费。
为保证锅炉燃烧室燃烧完全,废气流量不宜过大,废气中含氧量应与燃烧所用空气相当,尽量避免产生焦油、树脂等。一般可将废气作助燃空气使用(一次进风),如果废气中含有高湿、腐蚀性的气体或蒸汽,通常将废气在锅炉燃气流的下流侧引进作为二次助燃空气使用(二次进风)。
(4) 燃料消耗
热力燃烧法需消耗一定的辅助燃料。按照热量衡算,所需的辅助燃料只要满足将全部废气升温到反应温度(760~820℃)的条件即可。废气中所含可燃组分的热值,如果发挥出来,可减少辅助燃料的消耗。也就是说,如果废气中的可燃组分浓度愈高或废气的初始温度愈高,则消耗的燃料就愈少。例如,废气中可燃组分的浓度达到50%LEL而无预热,或者浓度达到25%LEL而预热至430℃时,按热量衡算,要达到760℃的反应温度,可不需要辅助燃料。对大多数碳氢化合物来说,如要升温至480-540℃,尚需一定量的辅助燃料,其目的是要将其所含的热值发挥出来。
应用
热力燃烧法能基本消除有害物而不产生废水、废渣,还对废气流量和成分变化具有较好的适应性,而且设备与工艺比较简单。但大多数热力燃烧都需要使用一定量的辅助燃料,故其运行费用较高。热力燃烧广泛地应用于涂装作业、印刷、石油、化工、食品、黏结剂等生产过程中的有机物废气的净化。
参考资料
最新修订时间:2022-08-25 14:42
目录
概述
基本理论
参考资料