通过对系统输入和输出的相关函数之间的关系进行分析建立系统的数学模型。这种方法可以比较有效地克服系统输出中含有的随机噪声给建模带来的困难。适当选择输入,使它与噪声成为统计不相关的,就可通过相关运算把系统的输入输出关系转变为输入自相关和输入输出互相关的关系,从而消除系统噪声的影响,使建模更为容易。
。于是随机性的输入与输出之间的关系被确定性的
自相关函数与
互相关函数之间的关系所代替,这就是著名的维纳-霍夫方程 (见维纳滤波)。在适当地选择输入,求得输入自相关函数和输入输出互相关函数之后,只须解出维纳-霍夫方程就可以得到随机系统的脉冲响应模型。第二种随机系统模型是
自回归模型:yt=a1yt-1+a2yt-2+…+anyt-n+εt,式中{yt}是系统的平稳输出序列,{εt}是白噪声序列,yt与εt,εt+1,…是统计不相关的,a1,a2,…,an是模型中待估计的系数。对于这种模型,相关分析法建模是利用输出序列{yt}的自相关序列{rj=E【yt,yt+j】,j=0,1,2,…}求得系数a1,a2,…,an的估计值,最后得到随机系统的自回归模型。