磁形状因子是在低入射电子能量,低转移动量的弹性
散射过程(?)p→e(?)中,光子交换是主要的(是大项),质子的电磁形状因子G_E和G_M之比G_E/G_M,可通过测量反冲质子横极化
微分散射截面之差P_t与纵极化微分散射截面之差P_l得到。
简介
the magnetic form factor
磁形状因子
electromagnetic form factor
电磁形状因子
详解
1.The ratio of the proton elastic electromagnetic form factors, G_E/G_M, was obtained by measuring P_t and P_l, the transverse and longitudinal recoil proton polarization components of the elastic scattering process (e|→)p → e(p|→) at low transverse momentum Q~2, respectively.
在低入射电子能量,低转移动量的弹性散射过程(?)p→e(?)中,光子交换是主要的(是大项),质子的电磁形状因子G_E和G_M之比G_E/G_M,可通过测量反冲质子横极化
微分散射截面之差P_t与纵极化微分散射截面之差P_l得到。
(3)
nucleonelectromagnetic form factor
核子电磁形状因子
(4) electromagnetic forming
电磁形成
(5) magnetic shape memory material
磁形状记忆材料
(6) ferromagnetic shape memory alloy
铁磁形状记忆合金
1.In the paper,the constitutive models of ferromagnetic shape memory alloy are studied mainly.
主要分析了现有的关于铁磁
形状记忆合金的本构关系,从它们所包含力学特点和基本理论出发进行了分类介绍,指出了存在的问题,最后对本构模型的进一步改进提出了修改意见。
2.As a new class of shape memory alloy, Ni_2MnGa ferromagnetic shape memory alloy (FSMA) has both large reversible strain and higher response frequency, which has attracted considerable attention and has been widely investigated.
Ni_2MnGa铁磁形状记忆合金既有大的可逆应变,又有较高的响应频率,作为一种新型的形状记忆合金受到了广泛的关注和研究。