吸附剂从
电解质溶液中选择性的吸附与其组成有关的离子称为离子选择吸附。例如,在KBr溶液中加入过量AgNO3,生成AgBr沉淀后溶液还有过剩Ag+和NO3-,由于Ag+是与AgBr组成有关的离子,AgBr将优先吸附Ag+而带正电荷,而NO3-是
反离子(counterion);反之,如果在AgNO3溶液中加入过量的KBr,生成AgBr沉淀后,溶液中还有过量的K+和Br-,AgBr将优先吸附Br-而带负电,K+则聚集在AgBr表面附近的溶液中,其中Br-是电位离子,K+是反离子。
吸附剂从电解质溶液中吸附某种离子的同时,将吸附剂表面上的同号离子等电量的置换到溶液中去的过程称为
离子交换吸附或离子交换。离子交换吸附是一个可逆过程,能进行离子交换吸附的吸附剂称为
离子交换剂。
例如,土壤中的黏土就是一种
阳离子交换剂。当把(NH4)2SO4施入土壤后,NH4+便与吸附在黏土上的可交换离子(Ca+、Mg2+、K+、Na+等)进行等电量交换,将植物所需要的养分NH4+储存在土壤中。
如黄药在方铅矿表面的吸附,
羧酸类捕收剂在萤石、白钨矿表面的吸附。晶体表面的原子价键与晶体内部的不同,它常常不饱和、不完整,,故晶体的面和棱上的离子与溶液中的成分发生强烈的相互作用,并有能力与极性相反的分子和离子相结合,或吸附它们。吸附的能力大致与表面积成正比,即与颗粒大小成反比。
电解液中的离子或有机分子在电极界上因与金属表面原子间有类似于化学键的表面键力而引起的吸附,它与金属和被吸附物种的特性有关,故称特性吸附。特性吸附对双电层结构和电极反应速率有一定影响。据此,往往于电解液中添加某些表面活性物质来控制电极反应的进程如电镀液中的添加剂、腐蚀环境中的缓蚀剂等。
特性吸附概念的产生是为了解释相同浓度的不同电解质在汞电极上的电毛细曲线不同而提出的。水溶液中钠和钾的卤化物在比零电荷电势更正的地方。电毛细曲线出现的这些不同,说明电极与阴离子之间有相互作用。并发现这种效应越大,阴离子的半径越大,所以产生了特性吸附的离子部分或全部失去水分子的思想。