离心
分离(centrifugal separation):借助于
离心力,使比重不同的物质进行分离的方法。 由于离心机等设备可产生相当高的
角速度,使离心力远大于重力,于是溶液中的
悬浮物便易于沉淀析出:又由于比重不同的物质所受到的离心力不同,从而
沉降速度不同,能使比重不同的物质达到分离。
离心力
离心力是一种
惯性力。当物体在做非
直线运动时(非
牛顿环境,例如:
圆周运动或转弯运动),因物体一定有本身的质量存在,质量造成的惯性会强迫物体继续朝着运动轨迹的切线方向(原来那一瞬间前进的直线方向)前进,而非顺着接下来转弯过去的方向走。
若这个在做非直线运动的物体(例如:车)上有乘客的话,乘客由于同样随着车子做转弯运动,会受到车子向乘客提供的向心力,但是若以乘客为
参照系,由于该参照系为
非惯性系,他会受到与他
相对静止的车子给他的一个指向
圆心的向心力作用,但同时他也会给车子一个反向等大,由圆心指向外的力,就好像没有车子他就要被甩出去一样,这个力就是所谓的
离心力。由于处于非惯性系中,此状况下物体所感受的力并非真实,所以有些说法会称这种现象为“离心力”。)
基本原理
当
非均相体系围绕一中心轴做旋转运动时,运动物体会受到离心力的作用,旋转速率越高,运动物体所受到的离心力越大。在相同的转速下,容器中不同大小密度的物质会以不同的速率沉降。如果
颗粒密度大于液体密度,则颗粒将沿离心力的方向而逐渐远离中心轴。经过一段时间的离心操作,就可以实现密度不同物质的有效分离。
方法
根据离心方式的不同,可分为
差速离心法和
密度梯度离心等。
(1)
差速离心:又叫分级离心法,是生化分离中最为常用的离心分离方法。它指采用低速和高速两种离心方式交替使用,用不同强度的离心力使具有不同密度的物质
分级分离的方法。离心后把
上清液与沉淀分开,然后再将上清液加高转速离心,分离出第二部分沉淀,如此往复加高转速,逐级分离出所需要的物质。
(2)
密度梯度离心:也叫
区带离心,即离心是在具有连续
密度梯度的介质中进行。将试样铺放在一个密度变化范围较小、梯度斜度变化比较平缓的密度梯度介质表面,在离心力场作用下试样中的颗粒按照各自的沉降速率移动到梯度介质中的不同位置,而形成一系列试样组分区带,使不同沉降速率的颗粒得以分离。
分类
固一固分离
使固体之间相互
分离的离心分离法称离心分级,设备为
离心分离机。用控制离心时间的办法,使得溶液中只沉淀大颗粒,而不是所有颗粒,这样就可逐次将颗粒按大小分开。
液一液分离
不互溶的液体在离心机中因密度不同而很快
分离。这种方法比重力分离时间要短得多。常用一种称为
离心萃取机的装置来分离液体溶液组分。该装置由放置在圆筒转鼓中的一系列多孔同心环组成,转鼓环绕着一个筒形轴以每分钟2 0005 000转的速度旋转,液体通过筒形轴进出,以径向顺流方式在转筒中流动而达到液体溶液组分的分离。
气一气分离
同位素研究中常用的手段。在高速旋转下,气体状态的同位素混合物得以相互
分离。用离心分离浓缩235U是有前景的方法之一。
固一液分离
常量分析中常用
过滤法,
半微量分析中则用离心
分离法。常用的旋转装置有手摇离心机和
电动离心机(通常转速为1}4千周/分),分离速度远比过滤为快。
应用
胶体化学
1924年瑞典的丁.
斯韦德贝里设计了
超速离心机,这是一种以极高的
角速度运转的离心机,1940年获得的
离心加速度30万倍于
重力加速度,它和30年代多层吸附理论的建立,以及40年代疏液胶体稳定理论的建立,可说是近半世纪中胶体化学(见
胶体和表面化学)领域内的三大成就。超速离心机的
分离原理是,当一个含有聚合物或巨分子的溶液,在
离心力是重力的25万倍时,分子相互分离,纯溶剂留在界面以上,这个界面以一定速度向容器低部移动。若溶质的分子量不均匀,这个界面上的浓度梯度也不均匀,则那些分子量低的会落在大分子之后。用光学仪器可观察出这个界面,从而精确测定沉降速率,而每种成分的沉降速率又与其分子量有关,因而可以计算出各成分的分子量。
超速离心机不仅能分离胶粒,更重要的是它能测定胶粒的沉降速率、
平均分子量及混合体系的重量分布,因而在胶体化学研究(尤其是
亲液胶体)中起了重大的作用。
高分子化学
超速离心机的出现为对高分子溶液的深入了解提供了一种有力的研究手段。1940年
斯韦德贝里使用
超速离心法测定了分子量及其分布,可直接测定几万至几百万的分子量。
高分子化合物分子量测定方法的出现,极大地推动了高分子化学的发展,许多
天然高分子属于单一分散体系(所有分子都持同一分子量),对这种系统,超速离心法是最好的分子量测定法,比
渗透压、光散射和粘度等测定法更好。
生物化学超速离心法
同样为生物化学提供了一种强有力的研究手段。
斯韦德贝里应用
超速离心法测量了蛋白质分子在水中的沉降速率,从而能计算蛋白质的分子量。他的一些测定结果如下:
牛胰岛素:46 000:人血红球:63 000:人血清球:153 000:章血血清:2800 000:
烟草花叶病毒:31 400000。超速离心法还经常用于蛋白质的降解、
分离、精制以及
分子量分布测定。细胞研究中常用一种分带或区域离心机,用一个大容量旋转室,根据密度梯度离心分离原理来分离细胞。
环境保护离心分离法
常用于:①
离心过滤,借助离心作用从浆料中排除液体,浆料被引入一快速旋转的网篮中,固体留在多孔的网上,液体则受离心作用从
滤饼中挤出:或利用旋转器中的
离心力使轻重物质分开,重物质以稠泥浆的形式通过喷嘴流走。常用设备为离心
过滤机。②
离心沉降,
悬浮固体在离心力作用下移向或离开旋转中心,这样就可聚集在一个区域内而被移出,可以使颗粒的
沉淀时间从几小时减至几分钟。常用设备为
离心沉降器。③离心捕集,用于从煤烟、空气流中
分离出0. 1 } 1000微米的小
颗粒物质,是治理空气污染的有效手段之一。常用设备为离心捕集器,也称微粒收集器、
旋风除尘器。
其他应用
工业中常用离心
除渣器来净化
纸浆浆料,使浆料高速回转或产生回转旋涡作用,把尘粒
分离出来。还常用
离心干燥机,或称
离心脱水机,依靠
离心力将水分脱去。
展望离心分离法与其他方法相结合,可以产生新的更为有效的分离方法,这是离心分离法的现代发展方向。在这方面,离心分离法与
色谱法结合而产生的场流分级法(或称外力场流动
分馏法)就是一个典型例子。1966年J. C.吉丁斯提出一类新的无固定相的
色谱分离法,即场流分级法,或称单相色谱。这种方法的最初构思,是以离心力压迫分子于柱壁而代替固定相的保留作用,这样产生的分离方法称离心色谱,也叫沉积场流分级法。后来依据这一基本思想,以
电场、磁场、热梯度等代替
离心力场,得到不同的场流分级法,从而建立了一类
分离方法体系。场流分级法不但对
大分子和
胶体有很强的分离能力,而且它也能分离分子量小于103的物质和大于30微米的远远超出胶体范围的固体颗粒,其可分离的分子量有效范围约为103101',这样宽的连续分离范围是空前未有的。
近年来出现的离心制备
薄层色谱法是离心分离法渗透于
色谱领域而产生的又一种高效分离法。
层析薄板为圆形,样品注射于
圆心四周,从垂直于圆心的方向连续地加入
展开剂,薄板旋转,各不同组分即沿径向迅速展开。在
紫外灯照射下可观察到谱带的移动,由于板面设置是倾斜的,可沿斜向直接接收各分开的组分。该法已用于
天然产物、合成产物及异构体等的快速
分离提纯,分离效果优于制备
薄层色谱和柱层
色谱法,在一定程度上与制备型
高压液相色谱法相似,但在节省时间和溶剂等方面优于后者。利用
离心力将溶液中密度不同的成分进行
分离,从而发明了一种设备——
离心分离机。