符号主义
人工智能学术语
符号主义属于现代人工智能范畴,基于逻辑推理的智能模拟方法模拟人的智能行为。
术语介绍
符号主义(Symbolism)是一种基于逻辑推理的智能模拟方法,又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理,长期以来,一直在人工智能中处于主导地位,其代表人物是纽威尔、肖、西蒙和尼尔森。
早期的人工智能研究者绝大多数属于此类。符号主义的实现基础是纽威尔和西蒙提出的物理符号系统假设。该学派认为:人类认知和思维的基本单元是符号,而认知过程就是在符号表示上的一种运算。它认为人是一个物理符号系统,计算机也是一个物理符号系统,因此,我们就能够用计算机来模拟人的智能行为,即用计算机的符号操作来模拟人的认知过程。这种方法的实质就是模拟人的左脑抽象逻辑思维,通过研究人类认知系统的功能机理,用某种符号来描述人类的认知过程,并把这种符号输入到能处理符号的计算机中,就可以模拟人类的认知过程,从而实现人工智能。可以把符号主义的思想简单的归结为“认知即计算”。
从符号主义的观点来看,知识是信息的一种形式,是构成智能的基础,知识表示、知识推理、知识运用是人工智能的核心,知识可用符号表示,认知就是符号的处理过程,推理就是采用启发式知识及启发式搜索对问题求解的过程,而推理过程又可以用某种形式化的语言来描述,因而有可能建立起基于知识的人类智能和机器智能的同一理论体系.
符号主义学派认为人工智能源于数学逻辑. 数学逻辑从19 世纪末起就获得迅速发展,到20 世纪30 年代开始用于描述智能行为. 计算机出现后,又在计算机上实现了逻辑演绎系统。
符号主义的代表成果是1957年纽威尔和西蒙等人研制的成为“逻辑理论家”的数学定理证明程序LT。LT的成功,说明了可以用计算机来研究人的思维过程,,模拟人的智能活动。以后,符号主义走过了一条启发式算法——专家系统——知识工程的发展道路,尤其是专家系统的成功开发与应用,使人工智能研究取得了突破性的进展。
符号主义学派认为人工智能的研究方法应为功能模拟方法. 通过分析人类认知系统所具备的功能和机能,然后用计算机模拟这些功能,实现人工智能。
符号主义主张用逻辑方法来建立人工智能的统一理论体系,但却遇到了“常识”问题的障碍,以及不确知事物的知识表示和问题求解等难题,因此,受到其他学派的批评与否定。
参考资料
最新修订时间:2024-07-29 15:50
目录
概述
参考资料