等离子体浸没离子注入(PIII)或脉冲等离子掺杂(脉冲PIII)是通过应用
高电压脉冲直流或纯
直流电源,将等离子体中的加速离子作为掺杂物注入合适的
基体或置有
电极的半导体
芯片的靶的一种
表面改性技术。电极对于正电性等离子体是
阴极,对于负电性等离子体是
阳极。等离子体可在设计好的
真空室中以不同的等离子体源产生,如可产生最高离子密度和最低污染水平的
电子回旋共振等离子体源,及氦等离子体源,电容耦合等离子体源,
电感耦合等离子体源,直流辉光放电和金属蒸汽弧(对金属物质来说)。真空室可分为两种-
二极式和三极式
[2],前者电源应用于基体而后者应用于穿孔网格。
(也称为
二极型结构)中,晶片保持负
电位,正电性等离子体中的带正电荷的离子进行注入。被处理的晶片试样放置于真空室中的样品架上。样品架与高压
电源相连并与器壁绝缘。通过抽气进气系统,可获得工作气体在适当压力下的气氛。.
当
基体加上负偏压(几千伏)时,所产生的电压在电子等离子体的响应时间尺度ωe内 ( ~ l0sec)将电子从基体表面排斥开。这样在基体表面就会形成缺少电子的离子阵德拜鞘层。到达离子等离子体响应时间尺度ωi( ~ 10sec)后,负偏压的基体将会使离子加速。离子的移动降低了离子的密度,这使得鞘层为维持已存在的电位降,包含更多的离子,鞘层的边界扩展。等离子体鞘层将会一直扩展直到达到准稳态条件,称为柴尔德-朗缪尔限制定律;或在脉冲直流偏压的情况下高压停止。脉冲偏压优于直流偏压,因为其在存在脉冲阶段造成较小损害并在余辉阶段(也就是脉冲结束后的阶段)中和掉积累在晶片上的不需要的电荷。在脉冲偏压的情况下脉冲的TON时间一般在20-40 µs,而TOFF时间在0.5-2 µs,也就是占空比为1-8%。电源的使用在500到数十万伏特的范围,气压在1-100毫托的范围。这就是浸没型PIII操作的基本原理。
在三极型结构中,一个适当的穿孔网格被放置在基体和等离子体之间,在网格上加有脉冲直流偏压。在这里,如前所述的理论同样适用,但不同之处是获得的离子从网格中轰击基体,导致了注入。从这个意义上讲,三极型的PIII离子注入是粗糙版本的离子注入,因其不含有过剩的组分如离子束流控制,束聚焦,附加的网格加速器等。
在传统的浸没型PIII系统(也称为
二极型结构)中,芯片保持负
电位,正电性等离子体中的带正电荷的离子进行注入。被处理的芯片试样放置于真空室中的样品架上。样品架与高压
电源相连并与器壁绝缘。通过抽气进气系统,可获得工作气体在适当压力下的气氛。.
当
基体加上负偏压(几千伏)时,所产生的电压在电子等离子体的响应时间尺度ωe内 ( ~ l0sec)将电子从基体表面排斥开。这样在基体表面就会形成缺少电子的离子阵德拜鞘层。到达离子等离子体响应时间尺度ωi( ~ 10sec)后,负偏压的基体将会使离子加速。离子的移动降低了离子的密度,这使得鞘层为维持已存在的电位降,包含更多的离子,鞘层的边界扩展。等离子体鞘层将会一直扩展直到达到准稳态条件,称为柴尔德-朗缪尔限制定律;或在脉冲直流偏压的情况下高压停止。脉冲偏压优于直流偏压,因为其在存在脉冲阶段造成较小损害并在余辉阶段(也就是脉冲结束后的阶段)中和掉积累在芯片上不需要的电荷。在脉冲偏压的情况下脉冲的TON时间一般在20-40 µs,而TOFF时间在0.5-2 µs,也就是占空比为1-8%。电源的使用在500到数十万伏特的范围,气压在1-100毫托的范围。这就是浸没型PIII操作的基本原理。
在三极型结构中,一个适当的穿孔网格被放置在基体和等离子体之间,在网格上加有脉冲直流偏压。在这里,如前所述的理论同样适用,但不同之处是获得的离子从网格中轰击基体,导致了注入。从这个意义上讲,三极型的PIII离子注入是粗糙版本的离子注入,因其不含有过剩的组分如离子束流控制,束聚焦,附加的网格加速器等。