累计法
数学方法
累计法又称“方程式法”、“代数平均法”,是指用一个方程式,来表达从最初水平发展,按平均发展速度计算的各期水平的累计总和与相应的各期实际水平的总和一致。
累计法的步骤
由于建立和解高次方程比较麻烦,因此,在实际工作中都是根据事先编好的《平均增长速度查对表》,通过查表取得结果。步骤是:
首先,计算各期实际发展水平之和,即各期发展之和除基期发展水平。
其次,判断是平均增长速度还是平均降低速度,即第一步所得数除以n,若结果大于1,为递增速度,应查增长速度表,若结果小于1,为递减速度,应查下降速度表。
最后,根据第一步所得数和n的数值查表,查得平均增(减)速度,如果需要平均发展速度,再按平均发展速度与平均增长速度的关系,将结果转化为平均发展速度。
例如:某市对“九·五”期间所辖县国内生产总值进行考评,某县“九·五”期间(1995—2000年)国内生产总值数据分别为:16565、19262、17740、17723、18944、18160万元。
某县“九·五”期间平均发展速度用方程式计算应是第一步所得数554.36%除以5得110.87%,大于100%,表示速度递增,查表可以知道,这个县“九·五”期间国内生产总值平均增长速度为3.5%,年平均发展速度为103.5%。
方法比较
用两种方法求平均发展速度,不论在考察的侧重点,还是所应用条件方面均不相同。
几何平均法的实质是要求从最初水平出发,按所求的平均发展速度发展,计算出的末期水平应等于实际末期水平,这种方法可以只根据最初水平与最末水平计算而不考虑中间水平的变化,其侧重点在于考察最末一期发展水平。
累计法的实质是要求从最初水平出发,按所求的平均发展速度计算的各期水平之和,应等于全期实际发展水平的总和。这种方法必须依据全期各期的发展水平才能计算,其侧重点在于考察全期发展水平的累计总和。
通过上面的分析可见,选用这两种方法的哪一种方法求平均发展速度为宜,应视计算对象的特点和不同要求而定。如上述某县“九·五”期间国内生产总值平均发展速度的计算,本文认为考察的重点为“九·五”期间的全期,因此,用累计法计算较为合理。
参考资料
最新修订时间:2024-05-21 14:15
目录
概述
累计法的步骤
参考资料