纯策略纳什均衡是指在一个
纯策略组合中,如果给定其他的策略不变,该节点不会单方面改变自己的策略,否则不会使节点访问代价变小。
如果
重复博弈中有惟一纯策略纳什均衡,那么我们怎么找出它的纯策略纳什均衡呢?首先看下面囚徒的困境的博弈的例子:
我们现在考虑该博弈重复两次的重复博弈,这可以理解成给囚徒两次坦白机会,最后的得益是
两个阶段博弈中各自得益之和.在两次博弈过程中,双方知道第一次博弈的结果再进行二次博弈.用逆推
归纳法来分析,先分析第二阶段,也就是第二次重复时两博弈方的选择.很明显,这个第二阶段仍然是两囚徒之间的一个囚徒的困境博弈,此时前一阶段的结果已成为既成事实,此后又不再有任何的后续阶段,因此实现自身当前的最大利益是两博弈方在该阶段决策中的惟一原则.
现在再回到第一阶段,即第一次博弈.理性的博弈方在第一阶段就对后一阶段的结局非常清楚,知道第二阶段的结果必然是(坦白,坦白),因此不管第一阶段的博弈结果是什么,双方在整个重复博弈中的最终得益,都将是第一阶段的基础上各加-5.因此从第一阶段的选择来看,这个
重复博弈与图l中得益矩阵表示的一次性博弈实际上是完全等价的.