线性子空间
线性空间中部分向量组成的线性空间
线性子空间(又称向量子空间,简称子空间)是线性空间中部分向量组成的线性空间。设W是域P上的线性空间V的一个非空子集合,若对于V中的加法及域P与V的纯量乘法构成域P上的一个线性空间,则称W为V的线性子空间。
定义
定义 设W是域P上的线性空间V的一个非空子集合,若对于V中的加法及域P与V的纯量乘法构成域P上的一个线性空间,则称W为V的线性子空间(或向量子空间),或简称子空间。
注:1.V的非空子集W是子空间的充分必要条件是:
(1)子集合W的任意两个向量α与β之和α+β仍是W中的向量;
(2)域P的任一数k与子集合W的任意一个向量α的积kα仍是W中的向量。
2.在线性空间中,由单个的零向量所组成的子集合是一个线性子空间,它叫做零子空间。
3.线性空间V自身与单独一个零向量都是V的线性子空间。这两个特殊的子空间称为V的平凡子空间;除平凡子空间外的线性子空间称为V的非平凡子空间。
举例
例1 设域是R,向量空间V是欧几里得空间。 取W为最后的分量是 0 的V中所有向量的集合。则W是V的子空间。