绝热冷却(adiabatic cooling)是指空气在绝热上升的过程中,气压随高度升高而降低,气块因体积膨胀而对外作功,从而导致空气本身温度的降低。绝热冷却是引起水汽凝结或
凝华的最重要的过程,大气中很多水汽凝结物和凝华物如云、雨等大都是由此而形成的。
简介
空气从地面上升,在上升过程中气压降低,体积膨胀,如果上升空气与周围没有热量交换,由于膨胀消耗能量,空气温度就要降低,这种温度变化称为绝热冷却。根据计算,在大气中空气每上升100米,因绝热变化会使温度降低1度左右。这种绝热冷却是引起水汽凝结或凝华的最重要的过程,大气中很多水汽凝结物和凝华物如云、雨等大都是由此而形成的。
背景知识
绝热过程
绝热就是隔绝、阻止热量的传递、散失、对流,使得某个密闭区域内温度或者热量不受外界影响或者外界不能够影响而保持内部自身稳定或者独立发生变化的过程和作用。绝热的作用包括保温和保冷两个方面。
绝热过程(adiabatic process)是指任一气体与外界无热量交换时的状态变化过程,是在和周围环境之间没有热量交换或者没有质量交换的情况下,一个系统的状态的变化。大气层中的许多重要现象都和
绝热变化有关。例如,在大气层的下层通常存在着温度随高度而递减,主要就是由于空气绝热混合的结果。导致
水蒸汽凝结、云和雨形成的降温作用,主要是由于空气上升时温度下降的结果;晴朗的、干燥的天气通常是与空气下沉引起的增温变干作用有关。上升空气的降温作用和下沉空气的增温作用主要是由于空气的
绝热膨胀和
绝热压缩的结果。
如果一个受到增温作用或降温作用的系统通过辐射和传导与周围发生热量交换,那么就称之为非绝热过程(diabatic process)。
空气冷却
使空气饱和之一是降低空气容纳水汽的限额,在大气中,主要靠空气的冷却。空气冷却有三种方式:辐射冷却(radiational cooling)、平流冷却(advectional cooling)、绝热冷却(adiabatic cooling) 。
形成原理
绝热冷却,从地面向上,气压迅速递减,原因如下:
(1)地面气压表整个气柱的重力,较高面的气压只代表上面气柱的压力
(2)空气具有压缩性,所以地面附近的空气密度很大,向上递减得很快
由此可见,假设有一块空气基于某种原因而上升,由于周围空气压力较低,它的体积势必要膨胀。为方便讨论,假设气场在升降过程中,不会与外界发生能量的交换,这种过程称为绝热过程(adiabatic process)。当气块因外面压力低而膨胀时,此种抵抗外压力,必须作功而消耗能量。但既然外界没有热量供应,自然只有减低自己的温度了。这就是绝热冷却的原理。
根据计算,气场未饱和前,空气每上升100米,因绝热变化会使温度降低1度左右。我们称它为
干绝热直减率(dry adiabatic lapserate)。相反来说,气场下降时,周围压力升高,所以气温亦会升高,我们称为绝热增暖,即是每下降一百米气温会上升一度。
大气现象
冷却绝热与云
在大气中空气每上升100米,因绝热变化会使温度降低1度左右。在一定温度下,空气容纳水汽有一定限度,达到这个限度就称为“饱和”,温度降低后,空气中可能容纳的水汽量就要降低。因此,原来没有饱和的空气在上升运动中由于绝热冷却可能达到饱和,空气达到饱和之后过剩的水汽便附着在漂浮于空中的凝结核上,形成水滴。当温度低于零摄氏度时,过剩的水汽便会凝结成细小的冰晶。这些水滴和冰晶聚集在一起,漂浮于空中便成了云。
冰雹云是由水滴、冰晶和雪花组成。一般分为三层:最下面一层温度为0℃以上,由水滴组成;中间温度为0℃至零下20℃,由过冷却水滴、冰晶和雪花组成;最上面一层温度在零下20℃以下,基本由冰晶和雪花组成。
冷却绝热与重力波
大气重力波是因静力稳定大气受到干扰而产生的一种波动。当气块受到扰动离开平衡位置向上移动时发生绝热冷却,在重力作用下回到平衡位置。同样向下移动时发生绝热增温,浮力使其回到平衡位置。这种振动向外转播形成的波动由于恢复力为重力和浮力因此称为重力波,如果考虑科氏力的影响就称为惯性重力波。重力波在暴雨等中尺度对流天气发生发展中可以起到一种触发机制的作用,还可以起到传输能量和动量的作用。
与绝热增温的区别
大气中作垂直运动的气块的状态变化通常接近于
绝热过程。
当空气块上升过程中,因外界气压逐渐降低,气块体积膨胀,对外作功,在绝热条件下,作功所需的能量,只能由其本身能量来负担,消耗内能而气块温度下降,这种因气块绝热上升而使温度下降的现象,称为“绝热冷却”;
当空气块下降过程中,因外界气压增大,外界对气块作功,在绝热条件下,作功的功,只能用于增加气块的内能,因而气块温度升高,这种因气块下沉而使温度上升的现象,称为“
绝热增温”。