网页分析算法可以归纳为基于网络拓扑、基于网页内容和基于用户访问行为三种类型。
1 基于网络拓扑的分析算法
基于网页之间的链接,通过已知的网页或数据,来对与其有直接或间接链接关系的对象(可以是网页或网站等)作出评价的算法。又分为网页粒度、网站粒度和网页块粒度这三种。
1.1 网页(Webpage)粒度的分析算法
PageRank和
HITS算法是最常见的链接分析算法,两者都是通过对网页间链接度的递归和规范化计算,得到每个网页的重要度评价。PageRank算法虽然考虑了用户访问行为的随机性和Sink网页的存在,但忽略了绝大多数用户访问时带有目的性,即网页和链接与查询主题的相关性。针对这个问题,HITS算法提出了两个关键的概念:权威型网页(authority)和中心型网页(hub)。
基于链接的抓取的问题是相关页面主题团之间的隧道现象,即很多在抓取路径上偏离主题的网页也指向目标网页,局部评价策略中断了在当前路径上的抓取行为。文献提出了一种基于反向链接(BackLink)的分层式上下文模型(Context Model),用于描述指向目标网页一定物理跳数半径内的网页拓扑图的中心Layer0为目标网页,将网页依据指向目标网页的物理跳数进行层次划分,从外层网页指向内层网页的链接称为反向链接。
1.2 网站粒度的分析算法
网站粒度的资源发现和管理策略也比网页粒度的更简单有效。网站粒度的爬虫抓取的关键之处在于站点的划分和站点等级(SiteRank)的计算。SiteRank的计算方法与PageRank类似,但是需要对网站之间的链接作一定程度抽象,并在一定的模型下计算链接的权重。
网站划分情况分为按域名划分和按IP地址划分两种。文献讨论了在分布式情况下,通过对同一个域名下不同主机、服务器的IP地址进行站点划分,构造站点图,利用类似PageRank的方法评价SiteRank。同时,根据不同文件在各个站点上的分布情况,构造文档图,结合SiteRank分布式计算得到DocRank。文献证明,利用分布式的SiteRank计算,不仅大大降低了单机站点的算法代价,而且克服了单独站点对整个网络覆盖率有限的缺点。附带的一个优点是,常见PageRank 造假难以对SiteRank进行欺骗。
1.3 网页块粒度的分析算法
在一个页面中,往往含有多个指向其他页面的链接,这些链接中只有一部分是指向主题相关网页的,或根据网页的链接锚文本表明其具有较高重要性。但是,在PageRank和HITS算法中,没有对这些链接作区分,因此常常给网页分析带来广告等噪声链接的干扰。在网页块级别(Blocklevel)进行链接分析的算法的基本思想是通过VIPS网页分割算法将网页分为不同的网页块(page block),然后对这些网页块建立pagetoblock和blocktopage的链接矩阵,分别记为Z和X。于是,在pagetopage图上的网页块级别的PageRank为Wp=X×Z;在blocktoblock图上的BlockRank为Wb=Z×X。已经有人实现了块级别的PageRank和HITS算法,并通过实验证明,效率和准确率都比传统的对应算法要好。
2 基于网页内容的网页分析算法
基于网页内容的分析算法指的是利用网页内容(文本、数据等资源)特征进行的网页评价。网页的内容从原来的以超文本为主,发展到后来动态页面(或称为hidden web)数据为主,后者的数据量约为直接可见页面数据(PIW,publiclyIndexable Web)的400~500倍。另一方面,多媒体数据、Web Service等各种网络资源形式也日益丰富。因此,基于网页内容的分析算法也从原来的较为单纯的文本检索方法,发展为涵盖网页数据抽取、机器学习、数据挖掘、语义理解等多种方法的综合应用。本节根据网页数据形式的不同,将基于网页内容的分析算法,归纳以下三类:第一种针对以文本和超链接为主的无结构或结构很简单的网页;第二种针对从结构化的数据源(如RDBMS)动态生成的页面,其数据不能直接批量访问;第三种针对的数据界于第一和第二类数据之间,具有较好的结构,显示遵循一定模式或风格,且可以直接访问。
2.1 基于文本的网页分析算法
1) 纯文本分类与聚类算法
很大程度上借用了文本检索的技术。文本分析算法可以快速有效的对网页进行分类和聚类,但是由于忽略了网页间和网页内部的结构信息,很少单独使用。
2) 超文本分类和聚类算法