联邦学习
2020年电子工业出版社出版的图书
《联邦学习》是2020年电子工业出版社出版的图书,作者是杨强、刘洋等。
内容简介
《联邦学习》凝聚了杨强教授团队的多年学术成果和工程经验
图书目录
序言i
前言ii
作者简介vi
第1 章引言/1
1.1 人工智能面临的挑战/2
1.2 联邦学习概述/4
1.2.1 联邦学习的定义/5
1.2.2 联邦学习的分类/8
1.3 联邦学习的发展/10
1.3.1 联邦学习的研究/11
1.3.2 开源平台/12
1.3.3 联邦学习标准化进展/13
1.3.4 联邦人工智能生态系统/14
第2 章隐私、安全及机器学习/15
2.1 面向隐私保护的机器学习/16
2.2 面向隐私保护的机器学习与安全机器学习/16
2.3 威胁与安全模型/17
2.3.1 隐私威胁模型/17
2.3.2 攻击者和安全模型/19
2.4 隐私保护技术/20
2.4.1 安全多方计算/20
2.4.2 同态加密/24
2.4.3 差分隐私/27
第3 章分布式机器学习/31
3.1 分布式机器学习介绍/32
3.1.1 分布式机器学习的定义/32
3.1.2 分布式机器学习平台/33
3.2 面向扩展性的DML /34
3.2.1 大规模机器学习/34
3.2.2 面向扩展性的DML 方法/35
3.3 面向隐私保护的DML /38
3.3.1 隐私保护决策树/38
3.3.2 隐私保护方法/40
3.3.3 面向隐私保护的DML 方案/40
3.4 面向隐私保护的梯度下降方法/42
3.4.1 朴素联邦学习/44
3.4.2 隐私保护方法/44
3.5 挑战与展望/46
第4 章横向联邦学习/47
4.1 横向联邦学习的定义/48
4.2 横向联邦学习架构/49
4.2.1 客户-服务器架构/49
4.2.2 对等网络架构/51
4.2.3 全局模型评估/53
4.3 联邦平均算法介绍/54
4.3.1 联邦优化/54
4.3.2 联邦平均算法/56
4.3.3 安全的联邦平均算法/59
4.4 联邦平均算法的改进/61
4.4.1 通信效率提升/61
4.4.2 参与方选择/62
4.5 相关工作/62
4.6 挑战与展望/64
第5 章纵向联邦学习/67
5.1 纵向联邦学习的定义/69
5.2 纵向联邦学习的架构/70
5.3 纵向联邦学习算法/71
5.3.1 安全联邦线性回归/72
5.3.2 安全联邦提升树/75
5.4 挑战与展望/79
第6 章联邦迁移学习/81
6.1 异构联邦学习/82
6.2 联邦迁移学习的分类与定义/82
6.3 联邦迁移学习框架/84
6.3.1 加法同态加密/87
6.3.2 联邦迁移学习的训练过程/87
6.3.3 联邦迁移学习的预测过程/88
6.3.4 安全性分析/88
6.3.5 基于秘密共享的联邦迁移学习/89
6.4 挑战与展望/90
第7 章联邦学习激励机制/93
7.1 贡献的收益/94
7.1.1 收益分享博弈/94
7.1.2 反向拍卖/96
7.2 注重公平的收益分享框架/97
7.2.1 建模贡献/98
7.2.2 建模代价/98
7.2.3 建模期望损失/98
7.2.4 建模时间期望损失/99
7.2.5 策略协调/99
7.2.6 计算收益评估比重/101
7.3 挑战与展望/103
第8 章联邦学习与计算机视觉、
自然语言处理及推荐系统/105
8.1 联邦学习与计算机视觉/106
8.1.1 联邦计算机视觉/106
8.1.2 业内研究进展/108
8.1.3 挑战与展望/109
8.2 联邦学习与自然语言处理/110
8.2.1 联邦自然语言处理/110
8.2.2 业界研究进展/111
8.2.3 挑战与展望/112
8.3 联邦学习与推荐系统/112
8.3.1 推荐模型/113
8.3.2 联邦推荐系统/114
8.3.3 业界研究进展/116
8.3.4 挑战与展望/116
第9 章联邦强化学习/117
9.1 强化学习介绍/118
9.1.1 策略/118
9.1.2 奖励/119
9.1.3 价值函数/119
9.1.4 环境模型/119
9.1.5 强化学习应用举例/119
9.2 强化学习算法/120
9.3 分布式强化学习/121
9.3.1 异步分布式强化学习/122
9.3.2 同步分布式强化学习/122
9.4 联邦强化学习/122
9.4.1 联邦强化学习背景/123
9.4.2 横向联邦强化学习/123
9.4.3 纵向联邦强化学习/125
9.5 挑战与展望/127
第10 章应用前景/129
10.1 金融/130
10.2 医疗/131
10.3 教育/132
10.4 城市计算和智慧城市/133
10.5 边缘计算和物联网/135
10.6 区块链/136
10.7 第五代移动网路/137
第11 章总结与展望/139
附录A 数据保护法律和法规/141
A.1 欧盟的数据保护法规/142
A.1.1 GDPR 中的术语/143
A.1.2 GDPR 重点条款/143
A.1.3 GDPR 的影响/146
A.2 美国的数据保护法规/147
A.3 中国的数据保护法规/148
参考文献/151
作者简介
杨强
杨强教授是微众银行的首席人工智能官(CAIO)和香港科技大学(HKUST)计算机科学与工程系讲席教授。他是香港科技大学计算机科学与工程系的前任系主任,并曾担任大数据研究院的创始主任(2015-2018 年)。他的研究兴趣包括人工智能、机器学习和数据挖掘,特别是迁移学习、自动规划、联邦学习和基于案例的推理。他是多个国际协会的会士(Fellow),包括ACM、AAAI、IEEE、IAPR 和AAAS。他于1982 年获得北京大学天体物理学学士学位,分别于1987年和1989 年获得马里兰大学帕克分校计算机科学系硕士学位和博士学位。他曾在在滑铁卢大学(1989-1995 年)和西蒙弗雷泽大学(1995-2001年)担任教授。他是ACM TIST 和IEEE TBD 的创始主编。他是国际人工智能联合会议(IJCAI)的理事长(2017-2019 年)和人工智能发展协会(AAAI)的执行委员会成员(2016-2020 年)。杨强教授曾获多个奖项,包括2004/2005 ACM KDDCUP 冠军、AAAI 创新人工智能应用奖(2018, 2020)和吴文俊人工智能杰出贡献奖(2019)。他是华为诺亚方舟实验室的创始主任(2012-2014 年)和第四范式(AI 平台公司)的共同创始人。
刘洋
刘洋是微众银行AI 项目组的高级研究员。她的研究兴趣包括机器学习、联邦学习、迁移学习、多智能体系统、统计力学,以及这些技术的产业应用。她于2012 年获得普林斯顿大学博士
学位,2007 年获得清华大学学士学位。她拥有多项国际发明专利,研究成果曾发表于Nature、IJCAI 和ACM TIST 等科研刊物和会议上。她曾获AAAI人工智能创新应用奖、IJCAI 创新应用奖等多个奖项,并担任IJCAI 高级程序委员会委员,NeurIPS 等多个人工智能会议研讨会联合主席,以及IEEE Intelligent Systems 期刊客座编委等。
程勇
程勇是微众银行AI 项目组的高级研究员。他曾任华为技术有限公司(深圳)高级工程师和德国贝尔实验室高级研究员,也曾在华为-香港科技大学创新实验室担任研究员。他的研究兴趣和
专长主要包括联邦学习、深度学习、计算机视觉和OCR、数学优化理论和算法、分布式和网络计算以及混合整数规划。他发表期刊和会议论文20 余篇。他于2006 年、2010 年、2013 年分别在浙江大学、香港科技大学、德国达姆施塔特工业大学获工学学士学位(一等荣誉)、硕士学位和博士学位。他于2014 年获达姆施塔特工业大学最佳博士论文奖,于2006年获浙江大学
最佳学士论文奖。他在ICASSP’15 会议上做了关于“混合整数规划”的教程。他是IJCAI’19 和NIPS’19 等国际会议的程序委员会委员。
康焱
康焱是微众银行AI 项目组的高级研究员。他的工作重点是面向隐私保护的机器学习和联邦迁移学习技术的研究和实现。他在马里兰大学巴尔的摩分校获计算机硕士和博士学位。他的博士论文研究的是以机器学习和语义网络进行异构数据集成,并获得了博士论文奖学金。在就读研究生期间,他参与了与美国国家标准与技术研究院(NIST)和美国国家科学基金会(NSF)合作的多个项目,设计和开发语义网络集成系统。他在商业软件项目方面也有着丰富的经验。他曾在美国
Stardog Union 公司和美国塞纳公司工作了四年多的时间,从事系统设计和实现方面的工作。
陈天健
陈天健是微众银行AI 项目组的副总经理。负责构建基于联邦学习技术的银行智能生态系统。在加入微众银行之前,他是百度金融的首席架构师,同时也是百度的首席架构师。他拥有超过12 年的大规模分布式系统设计经验,并在Web 搜索引擎、对等网络存储、基因组学、推荐系统、数字银行和机器学习等多个应用领域中实现了技术创新。他现居于中国深圳,与其他工作伙伴一起建设和推广联邦AI 生态系统和相关的开源项目FATE。
于涵
于涵现任职新加坡南洋理工大学(NTU)计算机科学与工程学院助理教授、微众银行特聘顾问。在2015—2018 年期间,他在南洋理工大学担任李光耀博士后研究员(LKY PDF)。在加入南洋理工大学之前,他曾在新加坡惠普公司担任嵌入式软件工程师。他于2014 年获南洋理工大学计算机科学博士学位。他的研究重点是在线凸优化、人工智能伦理、联邦学习及其在众包等复杂协作系统中的应用。他在国际学术会议和期刊上发表研究论文120 余篇,获得了多项科研奖项。
参考资料
最新修订时间:2024-06-11 04:46
目录
概述
内容简介
图书目录
参考资料