高分子共混物,俗称
聚合物合金(polymer alloy),是一类表观均一、含有两种或两种以上不同结构的
多组分聚合物体系的材料。通过共混可提高高分子材料的物理力学性能、加工性能,降低成本,扩大使用范围。因而是实现聚合物改性和生产多性能新材料的重要途径之一。
高分子共混物按生产方法分为:机械共混物、化学共混物、胶乳共混物和溶液共混物。①机械共混物。一般是通过辊筒、挤出机或强力混合器将不同聚合物的熔体进行混合得到的共混物;共混温度高于混合物中所含无定形聚合物组分的粘流温度,高于所含
结晶聚合物组分的熔点。机械共混时的高剪切应力可以导致聚合物降解。产生的大自由基,它与另一结构不同的聚 合物或大自由基作用有可能发生接枝、嵌段或交联反应,生成的接枝或
嵌段共聚物对相应均聚物有增容作用,可以提高共混组分的相容性,这种由力化学作用生成的混合物称为力化学共混物。②化学共混物。是由不同聚合物各自交联、相互穿透而形成的
互穿聚合物网络。③胶乳共混物。将不同聚合物胶乳进行混合,然后凝结、脱水干燥而获得的共混物,胶乳粒径约为 1μm。④溶液共混物。将分别溶于同一溶剂、粘度大致相同的不同聚合物溶液进行混合,生成可直接使用的共混溶液。
从热力学平衡体系考虑,两种材料能否溶混决定于体系的自由能变化:ΔF=ΔH-TΔS。式中ΔF为自由能变化;ΔH为焓的变化;T为温度;ΔS为熵的变化。不同聚合物混合时熵的变化很小,当ΔF=ΔH,亦即放热,才能互溶,否则不能成为结构均一的均相体系。绝大多数聚合物混合时皆需要吸收热量,在一般条件下皆不能互溶。两种本身不能互溶的聚合物即使能溶解在同一溶剂中,亦不互溶,在放置过程中将出现相分离现象。因为破坏结晶需要吸收热量,晶态聚合物与
非晶态聚合物不能互溶。两种晶态聚合物更系如此,亦不能互溶。高分子共混物是多组分多相体系,除互穿聚合物网络具有两个连续 相的特点外,其他共混物皆有连续相和分散相。不同性质的分散体(分散相)对基体(连续相)的物理力学性能,加工性能或其他性能可以起到不同的作用(见表)。基体和分散体皆是刚性的高分子共混物,称
高分子合金。 高分子共混物
高分子混合物的性能取决于所含各组分的性质、形态和相界面的性质。似互溶二元高分子共混物的
玻璃化温度和某些物理性能可按混合物规则进行估算: p=p1φ1+p2φ2+Iφ1φ2式中p为有关性能;φ为浓度;I为相互作用项。I为零时,共混物性能可按加和定律估算(见图);I为正值,各组分有协同作用,混合物的有关性能高于所含各组分性能的平均值;I为负值,为非协同体系,共混物有关性能低于所含各组分性能的平均值。
近十余年来,已发现许多在一定条件下可以互容或部分互容的高分子共混物。其中有两种不同无定形聚合物组成的共混物,有由无定形聚合物与
结晶聚合物组成的共混物,有同晶型高分子共混物,有由可以形成络合物的两种聚合物组成的共混物等。已商品化的高分子共混物主要有:
高抗冲聚苯乙烯,橡胶增韧的环氧树脂,ABS树脂-聚氯乙烯,聚氯乙烯-高抗冲聚甲基丙烯酸甲酯,聚氯乙烯-丁腈橡胶,ABS树脂-双酚A型聚碳酸酯,ABS树脂-热塑性聚氨酯,ABS树脂-聚砜,聚苯醚-聚砜以及离子键聚合物-
尼龙66等。