自协方差
统计学术语
统计学中,特定时间序列或者连续信号Xt的自协方差是信号与其经过时间平移的信号之间的协方差
简介
统计学中,特定时间序列或者连续信号Xt的自协方差是信号与其经过时间平移的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt]=μt,那么自协方差为
其中E是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:
其中k是信号移动的量值,通常称为延时。如果用方差σ进行归一化处理,那么自协方差就变成了自相关系数R(k),即
需要注意的是,在有些学科中自协方差术语等同于自相关。
可以认为自协方差是某个信号与其自身经过一定时间平移之后的相似性,自协方差σ就表示了在那个时延的相关性。经过方差的归一化处理将其范围转化为[−1,1]。
协方差
协方差(Covariance)在概率论统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
期望值分别为与的两个实数随机变量X与Y之间的协方差定义为:
协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
如果X与Y是统计独立的,那么二者之间的协方差就是0,这是因为
但是反过来并不成立,即如果X与Y的协方差为0,二者并不一定是统计独立的。取决于协方差的相关性η
更准确地说是线性相关性,是一个衡量线性独立的无量纲数,其取值在[-1,+1]之间。相关性η = 1时称为“完全线性相关”(相关性η = -1时称为“完全线性负相关”),此时将Yi对Xi作Y-X散点图,将得到一组精确排列在直线上的点;相关性数值介于-1到1之间时,其绝对值越接近1表明线性相关性越好,作散点图得到的点的排布越接近一条直线。
相关性为0(因而协方差也为0)的两个随机变量又被称为是不相关的,或者更准确地说叫作“线性无关”、“线性不相关”,这仅仅表明X与Y两随机变量之间没有线性相关性,并非表示它们之间一定没有任何内在的(非线性)函数关系,和前面所说的“X、Y二者并不一定是统计独立的”说法一致。
平稳过程
数学中,平稳过程(英语:Stationary process),又称严格平稳过程(英语:Strict(ly) stationary process)或强平稳过程(英语:Strong(ly) stationary process)是一种特殊的随机过程,在其中任取一段期间或空间()里的联合概率分布,与将这段期间任意平移后的新期间()之联合概率分布相等。这样,数学期望方差这些参数也不随时间或位置变化。
例如,白噪声AWGN)就是平稳过程,铙钹的敲击声是非平稳的。尽管铙钹的敲击声基本上是白噪声,但是这个噪声随着时间变化:在敲击前是安静的,在敲击后声音逐渐减弱。
在时间串行分析中稳态作为一个工具使用,在这里原始数据经常转换为平稳态,例如经济学数据经常随着季节或者价格水平变化。如果这些过程是平稳过程与一个或者多个呈现一定趋势的过程的线性组合,那么这些过程就可以表述为趋势平稳。将这些数据进行转换保留平稳数据用于分析的过程称为解趋势(de-trending)。
采样空间也是离散的离散时间平稳过程称为Bernoulli scheme,离散采样空间中每个随机变量可能取得N'个可能值中的任意一个。当N= 2 的时候,这个过程叫做伯努利过程
自相关函数
自相关(英语:Autocorrelation),也叫序列相关,是一个信号于其自身在不同时间点的互相关。非正式地来说,它就是两次观察之间的相似度对它们之间的时间差的函数。它是找出重复模式(如被噪声掩盖的周期信号),或识别隐含在信号谐波频率中消失的基频的数学工具。它常用于信号处理中,用来分析函数或一系列值,如时域信号。
参考资料
最新修订时间:2022-08-25 15:46
目录
概述
简介
协方差
参考资料