若尔当定理
数理科学术语
拓扑学中,若尔当曲线是平面上的非自交环路(又称简单闭曲线)。若尔当定理说明每一条若尔当曲线都把平面分成一个“内部”区域和一个“外部”区域,且任何从一个区域到另一个区域的道路都必然在某处与环路相交。该定理由奥斯瓦尔德·维布伦于1905年证明。
简介
若尔当定理的准确的数学表述如下:
设c为平面R上的一条若尔当曲线。那么c的像的补集由两个不同的连通分支组成。其中一个分支是有界的(内部),另外一个是无界的(外部)。c的像就是任何一个分支的边界。
若尔当曲线定理表面上是明显的,但要证明该定理则十分困难。对于较简单的闭曲线,例如多边形,是比较容易证明的,但要把它推广到所有种类的曲线,包括无处可微的曲线如科赫曲线,便十分困难。该定理对于球面上的若尔当曲线也成立,但对于环面上的若尔当曲线则不成立。
第一个发现该定理的是伯纳德·波尔查诺,他观察到这不是一个自明的定理,而需要证明。第一个给出证明的是卡米尔·若尔当,该定理就是以它命名的(后来发现他的证明仍有漏洞)。过了超过半个世纪,奥斯瓦尔德·维布伦最终在1905年给出了一个满意和严格的证明。后来又发现了一些其它的证明,有些较为简单(但相对而言仍较为复杂)。
推广
若尔当曲线定理可以推广到更高的维数:
设X为从球面S到R的一个连续的单射。那么X的像的补集由两个不同的连通分支组成。其中一个分支是有界的(内部),另外一个是无界的(外部)。X的像是它们的公共边界。
若尔当曲线定理还有另外一种推广,它说明平面上的任何若尔当曲线,视为从圆S到平面R的映射,都可以延伸到平面的一个同胚。这个表述比若尔当曲线定理更强。这个推广在更高的维数不成立,亚历山大角球就是一个著名的反例。亚历山大角球的补集的无界分支不是单连通的,因此亚历山大角球的映射不能延伸到整个R。
若尔当曲线定理的另外一个推广说明,如果M是R的任何紧致、连通、无界的n维子流形,那么M便把R分成两个区域:一个是紧的,另外一个不是紧的。
参考资料
最新修订时间:2022-08-25 16:52
目录
概述
简介
参考资料