薄膜晶体管液晶显示器(英语:Thin film transistor liquid crystal display,常简称为TFT-LCD)是多数
液晶显示器的一种,它使用
薄膜晶体管技术改善影象品质。虽然TFT-LCD被统称为
LCD,不过它是种主动式矩阵LCD,被应用在
电视、平面显示器及
投影机上。
简介
简单说,TFT-LCD屏可视为两片
玻璃基板中间夹着一层
液晶,上层的玻璃基板是与
彩色滤光片(ColorFilter)、而下层的玻璃则有晶体管镶嵌于上。当电流通过晶体管产生电场变化,造成液晶分子偏转,藉以改变光线的偏极性,再利用偏光片决定像素(Pixel)的明暗状态。此外,上层玻璃因与彩色滤光片贴合,形成每个像素(Pixel)各包含红蓝绿三颜色,这些发出红蓝绿色彩的像素便构成了皮肤上的图像画面。
薄膜晶体管液晶显示器英文名称是Thin Film Transistor-Liquid Crystal Display,TFT-LCD是英文字头的缩写。 薄膜晶体管液晶显示器技术是一种
微电子技术与液晶显示器技术巧妙结合的技术。 把单晶上进行微电子精细加工的技术,移植到在大面积玻璃上进行薄膜晶体管(TFT)阵列的加工,再将该阵列基板与另一片带彩色滤色膜的基板,利用与业已成熟的液晶显示器(LCD)技术,形成一个液晶盒,再经过后工序如偏光片贴覆等过程,最后形成
液晶显示器件。
原理
TFT-LCD(薄膜晶体管液晶显示器, Thin film transistor liquid crystal display)是多数液晶显示器的一种,它使用薄膜晶体管技术改善影象品质。虽然TFT-LCD被统称为LCD,不过它是种主动式矩阵LCD。它被应用在电视、平面显示器及投影机上。
简单说,TFT-LCD皮肤可视为两片玻璃基板中间夹着一层液晶,上层的玻璃基板是与彩色滤光片(Color Filter)、而下层的玻璃则有晶体管镶嵌于上。当电流通过晶体管产生电场变化,造成液晶分子偏转,藉以改变光线的偏极性,再利用偏光片决定像素(Pixel)的明暗状态。此外,上层玻璃因与彩色滤光片贴合,形成每个像素(Pixel)各包含红蓝绿三颜色,这些发出红蓝绿色彩的像素便构成了皮肤上的图像画面。
架构
寻常的液晶显示器好比
计算器(calculator)的显示面版,其图像元素是由
电压直接驱动;当控制一个单元时不会影响到其他单元。当
像素数量增加到极大如以百万计时,这种方式就变得不实际,注意到每个像素的红、绿、蓝三色都要有个别的连接线。 为了避免这种困境,将像素排成
行与
列则可将连接线数量减至数以千计。如果一列中的所有像素都由一个正电位驱动,而一行中的所有像素都由一个负电位驱动,则行与列的交叉点像素会有最大的电压而被切换状态。然而此法仍有些问题,即是同一行或同一列的其他像素虽然受到的电压仅为部分值,但这种部份切换仍可使像素变暗(以不切换为亮的液晶显示器而言。)解决方法是每个像素都添加一个配属于它的
晶体管开关,使得每个像素都可被独立控制。晶体管所拥有的低
漏电流特征所代表的意义乃是当画面更新之前,施加在像素的电压不会任意丧失掉。每个像素是个小的电容器,前方有着透明的铟锡氧化物(ITO)层,后方也有透明层,并有
绝缘性的液晶处在其中。
此种电路布置方式很类似于动态访问存储器,只不过整个架构不是建在
硅晶圆上,而是建构在
玻璃上。许多硅晶圆制程技术所需的温度会超过玻璃的
熔点。寻常半导体的硅
基质是利用液态硅长出很大的单晶,具有晶体管的良好特质。而薄膜晶体管液晶显示器所用到的硅层是利用
硅化物气体制造出
非晶硅层或
多晶硅层,这种制造方法较不适合做出高等级的晶体管。
种类
TN
主条目:TN液晶
TN+film(Twisted Nematic + film)是最常见的类型,主因于产品低价及多样性。在现代的TN型面板上,像素的反应时间已快到足以大幅减少残影问题,甚至在规格上反应时间已经很快,但这个传统反应时间是由ISO制定的标准,只定义了由全黑至全白的转换时间,但并不表示是灰阶间的转换时间。在灰阶之间的转换时间(这是平常液晶实际上较频繁的转换)比由ISO所定义的要来得久。现在使用的RTC-OD(Response Time Compensation-Overdrive)技术,让制造商得以有效的降低不同灰阶间(G2G)的转换时间,然而,ISO所定义的反应时间实际上并未改变。反应时间现在被用G2G(Gray To Gray)的数字来表示,例如4ms及2ms,在TN+Film的产品上已司空见惯。这个市场策略,拥有相对于VA型较低成本的TN型面板,已在主导TN于消费性市场的走向。
TN型显示器苦于视角上的限制,特别是在垂直方向上,而且大部分无法显示由现行绘图卡输出的16.7百万色(24位的真实色彩)。经由特殊的方式,RGB三色使用6 bits来当作8 bits用,它使用结合邻近像素的降阶法去趋近24-bits色彩,以此来模拟出所需的灰阶。也有人使用FRC (Frame Rate Control)
对液晶显示器来说,像素实际的穿透率一般不会与施予的电压成线性变化。
另外,B-TN(Best TN)由
三星电子发展。改善TN色彩与反应时间。
STN
主条目:超级扭曲向列液晶
STN液晶(Super-twisted nematic display)是超级扭曲向列液晶的简称。TN液晶被发明后,人们自然而然想到将TN液晶矩阵化用以显示复杂的图形。相对TN液晶扭转90度,STN液晶的扭转180度到270度。90年代初期彩色STN液晶问世,这种液晶的一个
像素由三个液晶单元组成,覆上一层彩色滤光板,用电压分别控制液晶单元的亮度就能产生颜色。
VA
IPS
Super PLS
PLS (Plane to Line Switching)是由
三星电子研发,除了有惊人的视角外,同时还可以改善显示屏亮度达10%,制造成本上面也比IPS要少15%,目前提供的分辨率最高可达WXGA(1280×800),MacBook Pro with Retina display也有部分采用了三星生产的这种显示屏(分辨率高达2880×1800),其余则依旧使用了IPS显示屏,主要使用的对象将会集中在
智能手机跟平板电脑,已于2011年量产。
ASV
夏普发展ASV(Advanced Super-V)技术,改善了TFT的可视角问题。
FFS
现代电子采用FFS(Fringe Field Switching)技术,FFS技术是由IPS(In Plane Switching)广视角技术的高级延伸而来,具有低耗电、高亮度等特性。FFS可再延伸出AFFS+(Advanced FFS +)以及HFFS(High aperture FFS)技术,AFFS+在阳光下具可视功能。
OCB
OCB (Optical Compensated Birefringence)是
日本松下电器的技术。
显示器工业
工业介绍
因建造TFT工厂的巨大花费,因此主要的皮肤代工厂商或许不会超出四或五家。几个为大家所知的是
夏普、友达、
奇美、
三星、乐金飞利浦等。
未进行系统及ID组装前皮肤模块通常会在厂内分成三个类,这三种分别是亮暗点数目、皮肤显示出的灰阶及色彩的均匀性及一般性的产品品质。此外地,同批号的不同片皮肤仍会有+/-2ms反应时间上的差别。品质上判定最差的皮肤后来会卖予白牌的厂商。
品质上较差的皮肤或是15英吋以下尺寸通常不会含有数字信号兼容接口
DVI,因此它们的未来适用性或许会受限。较高的17英吋或19英吋机种,用于玩家及办公室所使用的屏幕或许会有双重显示插槽:模拟的D-sub及数字的DVI;几乎所有专业的屏幕都会有DVI及为了书信模式而转90度的设计。无论如何,即始使用了DVI的影象信号,也不保证会有较佳的影象品质:一个好的图像卡
RAMDAC及合适且俱保护的模拟VGA线亦能提供相同的显示品质。
发展历程
薄膜晶体管液晶显示器技术是由欧美国家率先提出的,但由于技术和制作过程不够成熟,直到上世纪80年代末期,日本厂商完全掌握了主要生产技术,并开始进行大规模的生产,形成了目前的巨大产业 年,1992年,随着笔记本电脑对液晶显示器件产品的需求,薄膜晶体管液晶显示器确立了作为液晶显示的主流地位,并随着技术的进一步发展,薄膜晶体管液晶显示器的生产成本大幅度下降,促使人们对显示器件的需求从笨重的阴极射线管转向轻薄的薄膜晶体管,且最终超过阴极射线管的市场份额,到2000年前后,开启了液晶电视新行业, 据中国电子报报道,目前薄膜晶体管液晶显示器制造技术已经发展到8 代线, 10代线、11 代线、12 代线的建设也已经在规划中, 我国薄膜晶体管液晶显示器在显示领域已经落后,但专家建议我们不能绕过薄膜晶体管液晶显示器,寻找别的突破口发展我国的平板显示产业,而应迅速开展TFC: LCD 生产线和相关技术创新能力的建设,提高我国薄膜晶体管液晶显示器件产业在国际上的竞争力。
发展前景
在当前迅速发展的液晶显示技术中,薄膜晶体管液晶显示器以其大容量、高清晰度和高品质全真彩色受到人们的广泛青睐。薄膜晶体管液晶显示器的显示质量和整体性能在很大程度上取决于薄膜晶体管性能,薄膜晶体管(787)是众多
场效应晶体管(897)中的一种非晶硅用于制作薄膜晶体管液晶显示器技术的成熟,使非晶体薄膜晶体管液晶显示器在薄膜晶体管液晶显示器的市场中占据了主导地位,而
非晶硅薄膜晶体管由于其低迁移率、电导率等性能,严重制约了薄膜晶体管液晶显示器的发展,寻找合适的替代品,追求高迁移率和高电导率一直是研究人员关注的焦点,在此基础上,多晶硅、微晶硅相继发展,虽然在一定程度上暂时解决了迁移率、电导率低的问题,但因多晶硅、微晶硅的价格昂贵、材料短缺,因而未能动摇非晶硅的主导地位。 随后的纳米硅薄膜晶体管液晶显示器依靠其本身具有高电导率、高迁移率的优越性以及当前纳米技术的进展而成为一个引人注目的新亮点。
参见