解集
数学专业词汇
解集是一个数学专业词汇,指以一个方程(组)或不等式(组)的所有解为元素的集合叫做该方程(组)或不等式(组)的解集。表示解的集合的方法有三种:列举法描述法和图示法。解集作为数学中的重要工具,在数学中有着十分广泛的应用。
定义
以一个方程(组)或不等式(组)的所有解为元素的集合叫做该方程(组)或不等式(组)的解集。解集作为数学中的重要工具,在数学中有着十分广泛的应用。很多题的结论均需用解集表示。
例:
x^2-1≥0的解集就是X={x|x≤-1,x≥1};
x^2-1≤0的解集就是X={x|-1≤x≤1};
x^2-3x-4=0的解集是X={-1,4}。
性质
方程(组)或不等式(组)的所有解均在其解集中,解集中的所有元素均为方程(组)或不等式(组)的解。无解的方程(组)或不等式(组)的解集为空集。
线性代数里向量(或矩阵)方程的解集是向量(或矩阵),这类元素构成集合,就不能称为区间或区域了。
函数方程(微分方程和积分方程)的解集是函数,解集里的元素都是函数。
对于二元不等式(组)的解集就是一个平面区域。
解集的表示法
解集的表示法也即集合的表示法,就是给出一个集合和组成这个集合的元素的表示方法。表示集合的方法有三种。
列举法
列举法,又叫外延法。把集合的元素一一列举出来,写在大括号“{ }”内,并用逗号“,”把它们彼此分开。例如,小于10的素数集合A可表示为A={2,3,5,7}。又如3的自然数幂所组成的集合B可表示为B={3,9,27,…,3n,…}。在用列举法表示一个无限集或元素很多的集的时候常用省略号。这时,要注意表示的明确性,要能从已经列举的元素中知道被省略的元素是什么。在用列举法表示集合时,元素的次序无关紧要,但不允许重复。
描述法
描述法,又称特征性质法或内涵法。利用概括原则指出确定集合元素的特征性质P(x),从而给出集合的方法称为描述法。具有性质P(x)的所有元素 x 组成的集合A记为A={x|P(x)}或{x:P(x)}。其中P{x}表示集合中元素的特征性质。所谓集合元素的特征性质是指:集合的每个元素的共有的性质,并且不属于这个集合的元素都不具有这个性质。
图示法
图示法,如维恩图法。用圆、椭圆、矩形或其他封闭曲线围成的区域表示集合。如图1所示,矩形表示全集I,曲线包围的区域表示集合A,B,C等。这种方法严格地说应称示意法,有一定的局限性,但它的直观性能帮助人们思考。
特殊集合的习惯表示法,如常以字母N,Z,Q,R,C分别表示自然数集、整数集、有理数集、实数集、复数集等。在数学的各分支中,也有用约定的特殊符号(或特殊图形)来表示特定集合的。
参考资料
最新修订时间:2024-11-15 14:46
目录
概述
定义
性质
参考资料