费米-狄拉克统计
统计规律
费米-狄拉克统计(英语:Fermi–Dirac statistics),简称费米统计或FD 统计,是统计力学中描述由大量满足泡利不相容原理费米子组成的系统中粒子分处不同量子态统计规律。该统计规律的命名源于恩里科·费米保罗·狄拉克,他们分别独立地发现了该统计律。不过费米在数据定义比狄拉克稍早。
简介
费米-狄拉克统计(英语:Fermi–Dirac statistics),简称费米统计或FD 统计,是统计力学中描述由大量满足泡利不相容原理费米子组成的系统中粒子分处不同量子态的统计规律。该统计规律的命名源于恩里科·费米保罗·狄拉克,他们分别独立地发现了该统计律。不过费米在数据定义比狄拉克稍早。
费米–狄拉克统计的适用对象是热平衡的费米子(自旋量子数为半奇数的粒子)。此外,应用此统计规律的前提是系统中各粒子间相互作用可忽略不计。如此便可用粒子在不同定态的分布状况来描述大量微观粒子组成的宏观系统。不同的粒子分处不同能态,这点对系统许多性质会产生影响。自旋量子数为 1/2 的电子是费米–狄拉克统计最普遍的应用对象。费米–狄拉克统计是统计力学的重要组成部分,它利用了量子力学的一些原理。
基本介绍
根据量子力学,费米子为自旋为半奇数的粒子,其本征波函数反对称,在费米子的某一个能级上,最多只能容纳一个粒子。因而符合费米–狄拉克统计分布的粒子,当他们处于某一分布(“某一分布”指这样一种状态:即在能量为的能级上同时有个粒子存在着,不难想象,当从宏观观察体系能量一定的时候,从微观角度观察体系可能有很多种不同的分布状态,而且在这些不同的分布状态中,总有一些状态出现的几率特别的大,而其中出现几率最大的分布状态被称为最可几分布)时,体系总状态数为:
费米–狄拉克统计的最可几分布的数学表达式为:
由于费米-狄拉克统计在数学处理上非常困难,因此在处理实际问题时经常引入一些近似条件,使费米-狄拉克统计退化成为经典的麦克斯韦-玻尔兹曼统计。此外,对于玻色子,也有对应的玻色-爱因斯坦统计予以处理。
历史
1926年发现费米–狄拉克统计之前,要理解电子的某些性质尚较为困难。例如,常温下,对热容产生贡献的电子比传导电子要少100倍以上。此外,在常温下给金属施加一强电场,将造成场致电子发射(Field electron emission)现象,从而产生电流流经金属。研究发现,这个电流与温度几乎无关。当时的理论难以解释这个现象。
当时,由于人们主要根据的是经典静电学理论,因此在诸如金属电子理论等方面遇到的困难,无法得到令人满意的解答。他们认为,金属中所有电子都是等效的。也就是说,金属中的每个电子都以相同的程度对金属的热量做出贡献(这个量是波尔兹曼常数的一次项)。上述问题一直困扰着科学家,直到费米–狄拉克统计的发现,才得到较好地解释。
1926年,恩里科·费米、保罗·狄拉克各自独立地在发表了有关这一统计规律的两篇学术论文。。另有来源显示,P·乔丹(Pascual Jordan)在1925年也对这项统计规律进行了研究,他称之为“泡利统计”,不过他并未及时地发表他的研究成果。狄拉克称此项研究是费米完成的,他称之为“费米统计”,并将对应的粒子称为“费米子”。
1926年,拉尔夫·福勒在描述恒星白矮星的转变过程中,首次应用了费米–狄拉克统计的原理。1927年,阿诺·索末菲将费米–狄拉克统计应用到他对于金属电子的研究中。。1928年,福勒和L·W·诺德汉(Lothar Wolfgang Nordheim)在场致电子发射的研究中,也采用了这一统计规律。直至今日,费米–狄拉克统计仍然是物理学的一个重要部分。
相关条目
参考资料
最新修订时间:2022-08-25 18:29
目录
概述
简介
参考资料