赖卫华
南昌大学教授
1990年毕业于华东理工大学;二级教授,国务院政府特殊津贴获得者,荣获宝钢优秀教师奖。长期致力于食品安全快检方法的创新研究和成果推广,所研发的食品安全快速检测产品覆盖全国31个省、自治区和直辖市,广泛应用于“从农田到餐桌”全过程的监管。
人物简介
赖卫华,博士,博士生导师,二级教授,国务院政府特殊津贴获得者,荣获宝钢优秀教师奖。全国屠宰加工标准化技术委员会委员,江西省畜牧兽医学会副理事长。江西省“双千计划”首批培养类科技创新高端人才,江西省主要学科学术及技术带头人,江西省新世纪百千万人才工程人选。发表学术论文200余篇(H指数48),授权国家发明专利68项。
教育工作经历
教育经历
2003年南昌大学博士学位
1999年南昌大学硕士学位
1990年华东理工大学学士学位
工作经历
2008年11月- 南昌大学教授
2019年4月-2019年11月 新加坡南洋理工大学访学
2006年11月-2007年11月美国堪萨斯州立大学博士后
2002年9月-2008年11月 南昌大学副教授
1997年3月-2002年09月 南昌大学讲师
1993年9月-1997年03月 南昌大学助教
1990年7月-1993年09月 江西农业大学助教
教学情况简介
食品工程原理(本科生)
食品安全与质量管理(硕士研究生)
生物技术(博士研究生)
课题情况综述
1主持国家重点研发计划课题《口岸食品智能化、模块化快检组合产品研发》 (2019YFC1605502),1056万元
2主持国家自然科学基金面上项目《基于金属多酚配位微球高效淬灭的LFIA高灵敏检测中药中的克百威》(82374031),49万元
3主持国家自然科学基金地区项目《高灵敏多通量荧光淬灭均相免疫分析检测食源性致病菌》(82260644),35万元
4主持江西省生猪产业质量安全岗位专家项目 (JXARS-03),330万元
5主持国家科技奖后备培育项目《基于多种纳米材料的食品安全快速检测关键技术与应用》,100万元
主要获奖
1、《基于多种纳米材料速测关键技术的创新及应用》获得2020年度中国食品科学技术学会技术发明一等奖(排名第一)
2、《食品安全快速检测关键技术的研究与应用》获得2017年度江西省科技进步一等奖(排名第一)
3、2021年度江西省教学成果一等奖(排名第一)
4、《可控粒径高吸光强度多枝状胶体金纳米粒子的制备方法》获得第四届江西省专利奖(2020年,排名第二)
5、《“瘦肉精”胶体金免疫层析快速检测技术的研究》获得2006年度江西省技术发明二等奖(排名第二)
6、《高性能荧光标记探针的设计、构建及免疫层析应用》获得2021年度江西省自然科学一等奖(排名第三)
7、《纳米磁珠靶向高效分离技术的理论创新及应用》获得2020年度江西省自然科学一等奖(排名第四)
8、《食品中有毒有害物质快速检测新技术》获得2010年度中国轻工业联合会科学技术进步二等奖(排名第四)
学术论文
1. Application and development of super paramagnetic nanoparticles in sample pretreatment and immuno chromatographic assay. Trac-trends in Analytical Chemistry, 2019, 114: 151-170. IF 13.1
2 Ultrabright fluorescent microsphere and its novel application for improving the sensitivity of immunochromatographic assay. Biosensors and Bioelectronics, 2019, 135: 173–180. IF 12.6
3 Lateral flow immunoassay based on polydopamine-coated goldnanoparticles for the sensitive detection of zearalenone in maize. ACS Applied Material& Interfaces, 2019, 11(34): 31283-31290. IF 10.4
4 Biosensing multiplexer based on immunochromatographic assay for rapid andhigh-throughput classification of Salmonella serogroups. Sensors and Actuators B: Chemical, 2019, 282: 317-321. IF 9.2
5 A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7. Food Chemistry, 2019, 276: 333-341. IF 8.8
6 Novel ELISA based on fluorescent quenching of DNA-stabilized silvernanoclusters for detecting E. coli O157:H7. Food Chemistry, 2019, 281: 91-96. IF 8.8
7 Lateral flow immunoassays combining enrichment and colorimetry-fluorescence quantitative detection of sulfamethazine in milk based on trifunctional magnetic nanobeads. Food Control, 2019, 98: 268-273. IF6.0
8 Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine. Journal of Agricultural and Food Chemistry, 2019, 67(10): 3028-3036. IF 5.9
9. Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens. Journal of Agricultural and Food Chemistry, 2019, 67(33):9390-9398. IF 5.9
10 Recent advances of lateral flow immunoassay for mycotoxins detection. Trends in Analytical Chemistry, 2020,133, 116087. IF 13.1
11 Improving the performance of upconversion nanoprobe-based lateral flow immunoassays by supramolecular self-assembly core/shell strategies. Sensorsand Actuators B: Chemical, 2020, 318, 128233. IF 9.2
12 Sensitive and hook effect–free lateral flow assay integrated with cascade signal transduction system. Sensors and Actuators B: Chemical, 2020, 321(1):128465. IF 9.2
13 Using hapten cross-reactivity to screen heterologous competitive antigensfor improving the sensitivity of ELISA. Food Chemistry, 2020, 303,125379. IF 8.8
14 Glucose oxidase-induced colorimetric immunoassay for qualitative detection of danofloxacin based on iron (Ⅱ) chelation reaction with phenanthroline. Food Chemistry, 2020, 328, 127099. IF 8.8
15 Gold nanorods etching-based plasmonic immunoassay for qualitative and quantitative detection of aflatoxin M1 in milk. Food Chemistry, 2020,329, 127160. IF8.8
16 Green enzyme-linked immunosorbent assay based on the single-stranded binding protein-assisted aptamer for the detection of mycotoxin. Analytical Chemistry. 2020, 92(12): 8422-8426. IF 8.0
17 Reliable performance of aggregation-induced emission nanoparticle-based lateral flow assay for norfloxacin detection in nine typesof animal-derived food. Talanta, 2020, 219,121245. IF 6.1
18 Developmental trend of immunoassays for monitoring hazards in food samples A review. Trends in Food Science & Technology, 2021, 111:68-88. IF 16.0
19 Synthesis of PDA-Mediated Magnetic Bimetallic Nanozyme and Its Applicationin Immunochromatographic Assay. ACS Applied Materials &Interfaces, 2021,13, 1413−1423. IF 10.4
20 Chrysanthemum-like Au@Polydopamine synthesized using one-pot method and its advantage in immunochromatographic assay. Sensors &Actuators B: Chemical, 2021, 343, 130097. IF 9.2
21 Immuno-HCR based on contact quenching and fluorescence resonanceenergy transfer for sensitive and low background detection of Escherichiacoli O157: H7. Food Chemistry, 2021, 334, 127568. IF 8.8
22 Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection ofsulfamethazine. Journal of Hazardous Materials, 2022, 423, 127204. IF13.6
23 A novel method based on Ag–Au nanorings with tunable plasmonic properties for the sensitive detection of amantadine. Journal of Hazardous Materials, 2022, 431, 128498. IF 13.6
24 Tailored quantum dots for enhancing sensing performance of lateralflow immunoassay. Trends in Analytical Chemistry, 2022, 157: 116754. IF13.1
25 Development of a signal-enhanced LFIA based on tyramine-induced AuNPs aggregation for sensitive detection of danofloxacin. Food Chemistry,2022, 375, 131875. IF 8.8
26 Development of a label-free plasmonic gold nanoparticles aggregates sensor on the basis of charge neutralization for the detection of zearalenone. Food Chemistry, 2022, 370, 131365. IF 8.8
27 Molecular engineering powereddual-readout point-of-care testing for sensitive detection of Escherichiacoli O157:H7. ACS Nano, 2023, 17, 23, 23723–23731. IF 17.1
28 Synergistic dual-mechanism fluorescence quenching immunochromatographic assay based on Fe-polydopamine submicrobeads forsensitive detection of enrofloxacin. Chemical Engineering Journal, 2023,454, 140444. IF 15.1
29 Triple strategy-enhanced immunochromatographic assay based on APCB and AIEFM for the ultrasensitive detection of AFM1. Journal of Hazardous Materials, 2023, 460, 132438. IF 13.6
30 An integrated colorimetric and photothermal lateral flow immunoassay based on bimetallic Ag–Au urchin-like hollow structures for the sensitive detection of E. coli O157:H7. Biosensors and Bioelectronics, 2023, 225, 115090. IF 12.6
31 A spatial color co-recognition immunochromatographic assay based onthe hue-saturation-brightness color space to classify Salmonella serogroups. Sensorsand Actuators B: Chemical, 2023, 383, 133580. IF 9.221
32 Comparison of oriented and non-oriented antibody conjugation with AIE fluorescence microsphere for the immunochromatographic detection of enrofloxacin. Food Chemistry, 2023, 429, 136816. IF 8.8
33 Novel rapid detection of melamine based on the synergistic aggregationof gold nanoparticles. Food Chemistry, 2023, 428, 136789. IF 8.8
34 Sensitive lateral flow immunoassay strips based on Fe3+-chelatedpolydopamine nanospheres for the detection of kanamycin. Food Chemistry,2023, 411, 135511. IF 8.8
35 High-performance fluorescent microspheres based on fluorescencere sonance energy transfer mode for lateral flow immunoassays. Analytical Chemistry, 2023, 95, 17860-17867. IF 8.0
36 Plasmonic gold nanoparticles aggregate based on charge neutralization for the convenient detection of fumonisin B1 by colorimetry and SERS. Food Control, 2023, 147, 109610. IF 6.0
37 Molecular engineering and confinement effect powered ultrabright nanoparticles for improving sensitivity of lateral flow Immunoassay. ACS Nano, 2024, 18, 3, 2346–2354. IF 17.1
38 Biomineralization–powered integrated immunoprobe and its application in immunochromatographic assay. Biosensorsand Bioelectronics, 2024, 248, 115945. IF 12.6
39 Efficient photothermal sensor based on coral-like hollow gold nanospheres for the sensitive detection of sulfonamides. Small, in press. IF 15.2
标准
1农业部行业标准《尿液中盐酸克伦特罗的测定-胶体金免疫层析法》(NY/T 933-2005)
2国家市场监督管理局快检方法《禽肉中金刚烷胺的快速检测方法 胶体金免疫层析法》(KJ202203)
3江西省地方标准《量子点微球免疫层析试纸条评价技术规范》(DB36/T 1662-2022)
4 江西省地方标准化指导性技术文件《蔬菜水果中克百威的检测 量子点微球荧光免疫层析法》(DB36/Z001-2022)
5 江西省地方标准化指导性技术文件《动物源性食品中金刚烷胺的检测 量子点微球荧光免疫层析法》(DB36/Z 002-2022)
6 江西省地方标准化指导性技术文件《粮食中黄曲霉毒素B1、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇的检测量子点微球荧光免疫层析法》(DB36/Z 003-2022)
授权发明专利
参考资料
南昌大学食品学院赖卫华.南昌大学食品学院.2021-05-03
团队风采.春华秋实课题组.2021-12-16
最新修订时间:2024-09-05 16:38
目录
概述
人物简介
教育工作经历
参考资料