辐射传热
物理学术语
物体在向外发射辐射能的同时,也会不断地吸收周围其它物体发射的辐射能,并将其重新转变为热能,这种物体间相互发射辐射能和吸收辐射能的传热过程称为辐射传热。若辐射传热是在两个温度不同的物体之间进行,则传热的结果是高温物体将热量传给了低温物体,若两个物体温度相同,则物体间的辐射传热量等于零,但物体间辐射和吸收过程仍在进行。
介绍
依靠电磁波辐射实现热冷物体间热量传递的过程,是一种非接触式传热,在真空中也能进行。物体发出的电磁波,理论上是在整个波谱范围内分布,但在工业上所遇到的温度范围内,有实际意义的是波长位于0.38~1000um之间的热辐射,而且大部分位于红外线(又称热射线)区段中0.76~20um的范围内。所谓红外线加热,就是利用这一区段的热辐射。
详细介绍
任何物体在发出辐射能的同时,也不断吸收周围物体发来的辐射能。一物体辐射出的能量与吸收的能量之差,就是它传递出去的净能量。物体的辐射能力(即单位时间内单位表面向外辐射的能量),随温度的升高增加很快。
若到达该物体表面的热辐射的能量完全被吸收,此物体称为绝对黑体,简称黑体;
若到达该物体表面的热辐射的能量全部被反射;当这种反射是规则的,此物体称为镜体;
若是乱反射,则称为绝对白体
若到达物体表面的热辐射的能量全部透过物体,此物体称为透热体。
实际上没有绝对黑体和绝对白体,仅有些物体接近绝对黑体或绝对白体。例如:没有光泽的黑漆表面接近于黑体,其吸收率为0.97~0.98;磨光的铜表面接近于白体,其反射率可达0.97。影响固体表面的吸收和反射性质的,主要是表面状况和颜色,表面状况的影响往往比颜色更大。固体和液体一般是不透热的。热辐射的能量穿过固体或液体的表面后只经过很短的距离(一般小于1mm,穿过金属表面后只经过1m),就被完全吸收。气体对热辐射能几乎没有反射能力,在一般温度下的单原子和对称双原子气体(如 Ar、He、H、N、O等),可视为透热体,多原子气体(如CO、HO、SO、NH、CH等)在特定波长范围内具有相当大的吸收能力。
研究意义
研究热辐射规律,对于炉内传热的合理设计十分重要,对于高温炉操作工的劳动保护也有积极意义。当某系统需要保温时,即使此系统的温度不高,辐射传热的影响也不能忽视。如保温瓶胆镀银,就是为了减少由辐射传热造成的热损失。
吸收能力
理论研究证明,黑体的辐射能力计算公式称为斯忒藩-波耳兹曼定律。常数为黑体的辐射常数(或称斯忒藩-波耳兹曼常数),其值为5.669×10 W/(mK)。此式表明,温度对热辐射的影响极大。低温时热辐射常可忽略(如普通换热器中);高温时(如炉膛内),则成为传热的主要方式。
实际物体的辐射能的波长分布规律,随物体和温度而异。设实际物体辐射任一波[kg1][kg1]的辐射能力为,在同温度下的黑体辐射相同波长的能力为[152-0ru];若/[152-0ru]=常数,即物体的辐射能力与波长无关,则这种物体称为灰体。大多数工程材料在热辐射波长范围内接近于灰体。灰体的辐射能力与物体的表面状况及温度有关。
物体的辐射能力与同一温度下黑体的辐射能力之比,等于各自的辐射系数之比,称为黑度,它代表物体的相对辐射能力。G.R.基尔霍夫发现,任何物体的辐射能力与吸收率的比值都相同,且恒等于同温度下绝对黑体的辐射能力,即:基尔霍夫定律。它表明物体的吸收率与黑度在数值上相等,即物体的辐射能力越大,吸收能力也越大。
相关定理
两物体间辐射传热的速率可表示分别为两物体的表面温度;一物体的表面面积;以为基准的角系数,代表一物体辐射出去的能量投射到表面的分率,它取决于两物体的形状、大小和相对位置;为总辐射系数,其值与两物体的黑度、大小、形状和相对位置有关。
基本概念
能全部吸收辐射能,即吸收率A=1的物体,称为黑体或绝对黑体。
能全部反射辐射能,即反射率R=1的物体,称为镜体或绝对白体。
(1)灰体的吸收率A不随辐射线的波长而变。
(2)灰体是不透热体,即A十R=1。
普郎克(Plank)定律
式中 T—黑体的热力学温度,K;
e—自然对数的底数;
c1—常数,其值为3.743*10W·m;
c2—常数,其值为1.4387*10m·K。
式中h黑体得辐射常数,其值为5.67*10W/(m.K)
C-黑体得辐射系数,其值为5.67W/(m.K)
应与指出,四次定律也可推广到灰体,此时,式中 C—灰体的辐射系数,W/(m·K)。
只要知道物体的黑度,便可由上式求得该物体的辐射能力。
克希霍夫(Kirchhoff)定律
克希霍夫定律揭示了物体的辐射能力正与吸收率A之间的关系。
q=E1-A1Eb
式中 q—两板间辐射传热的热通量,W/m。
当两板达到热平衡,即T1=T2时,q=0,故
E1=A1Eb
其他解释
物体以电磁波形式传递能量的过程称为辐射,被传递的能量称为辐射能。物体可由不同的原因产生电磁波,其中因热的原因引起的电磁波辐射,即是热辐射。在热辐射过程中,物体的热能转变为辐射能,只要物体的温度不变,则发射的辐射能也不变。物体在向外辐射能量的同时,也可能不断地吸收周围其它物体发射来的辐射能。所谓辐射传热就是不同物体间相互辐射和吸收能量的综合过程。显然,辐射传热的净结果是高温物体向低温物体传递了能量。
热辐射和光辐射的本质完全相同,不同的仅仅是波长的范围。理论上热辐射的电磁波波长从零到无穷大,但是具有实际意义的波长范围为0.4~20μm,而其中可见光线的波长范围约为0.4~0.8μm,红外光线的波长范围为0.8—20/μm。可见光线和红外光线统称热射线。不过红外光线的热射线对热辐射起决定作用,只有在很高的温度下,才能觉察到可见光线的热效应。
热射线和可见光线一样,都服从反射和折射定律,能在均一介质中作直线传播。在真空和大多数的气体(惰性气体和对称的双原子气体)中,热射线可完全透过,但对大多数的固体和液体,热射线则不能透过。因此只有能够互相照见的物体间才能进行辐射传热。
参考资料
最新修订时间:2022-08-25 13:12
目录
概述
介绍
参考资料