输电线路是用
变压器将
发电机发出的
电能升压后,再经
断路器等控制设备接入输电线路来实现。结构形式,输电线路分为
架空输电线路和
电缆线路。
输电种类
广泛应用三相
交流输电,
频率为50赫(或60赫)。20世纪60年代以来
直流输电又有新发展,与交流输电相配合,组成交直流混合的
电力系统。
按照输送电流的性质,输电分为交流输电和
直流输电。19世纪80年代首先成功地实现了直流输电。但由于直流输电的电压在当时技术条件下难于继续提高,以致输电能力和效益受到限制。19世纪末,直流输电逐步为交流输电所代替。交流输电的成功,迎来了20世纪电气化社会的新时代20 世纪 60年代以来直流输电又有新发展, 与交流输电相配合, 组成交直流混合的电力系统。
电压等级
输电的基本过程是创造条件使
电磁能量沿着输电线路的方向传输。线路输电能力受到电磁场及电路的各种规律的支配。以大地电位作为参考点(零电位),线路导线均需处于由电源所施加的高电压下,称为
输电电压。
输电线路在综合考虑技术、经济等各项因素後所确定的最大输送功率,称为该线路的输送容量。输送容量大体与输电电压的平方成正比。因此,提高输电电压是实现大容量或远距离输电的主要技术手段,也是输电技术发展水平的主要标志。
从发展过程看,输电
电压等级大约以两倍的关系增长。当
发电量增至4倍左右时,即出现一个新的更高的电压等级。通常将 35~220KV的输电线路称为高压线路(HV),330~750KV的输电线路称为超高压线路(EHV),特高压电网是使用±800千伏及以上的直流电或1000千伏及以上交流电输电的电网,也称为特高压线路(UHV)。一般地说,输送
电能容量越大,线路采用的电压等级就越高。采用超高压输电,可有效的减少线损,降低线路单位造价,少占耕地,使线路走廊得到充分利用。我国第一条世界上海拔最高的“西北750KV输变电示范工程”——青海官亭至甘肃兰州东750KV输变电工程,于2005年9月26日正式投入运行。“1000KV交流特高压试验示范工程”——晋东南—南阳—荆门1000KV
输电线路工程,于2006年8月19日开工建设。该工程起自
晋东南1000KV
变电站,经
南阳1000KV
开关站,止于荆门1000KV变电站,线路路径全长约650.677Km。
此外,还有±500kV高压直流输电线路、±800kV特高压直流输电示范工程。±500kV主要有葛洲坝---上海南桥线、天生桥---广州线、贵州---广东线、三峡---广东线。向家坝-上海±800kV特高压直流输电示范工程是我国首个特高压直流输电示范工程。工程由我国自主研发、设计、建设和运行,是世界上运行直流电压最高、技术水平最先进的直流输电工程。
线路保护
主保护
主保护一般有两种纵差保护和三段式电流保护。而在超高压系统中主要采用
高频保护。
后备保护
电压保护和电流保护由于不能满足可靠性和选择性一般不单独使用一般是二者配合使用。且各种保护都配有
自动重合闸装置。而保护又有相间和单相之分。如是双回线路则需要考虑方向。
在整定时则需要注意各个保护之间的配合。还要考虑输电线路电容,互感,有无分支线路。和分支变压器,系统运行方式,接地方式,重合闸方式等。还有一点重要的是在220KV及以上系统的输电线路,由于电压等级高故障主要是
单相接地故障,有时可能会出现故障电流小于
负荷电流的情况。而且受各种线路参数的影响较大。在配制保护时尤其要充分考虑各种情况和参数的影响。
存在问题
(1)雷击。
雷雨季节遭受雷击机会很多。线路遭受雷击有三种情况:
三是雷击于线路附近或
杆塔上,在输电线上产生
感应过电压。无论是
直击雷过电压还是感应过电压,都使得导线上产生大量电荷,这些电荷以近于光的速度(每秒30万公里)向导线两边传播,这就是雷电进行波。
直击雷过电压,轻则引起线路
绝缘子闪烙,从而引起线路单相接地或跳闸,重则引起绝缘子破裂、击穿、断线等事故,造成线路较长时间的供电中断。雷电进行波顺线路侵入到变电站,威胁电气设备的绝缘,造成避雷器爆炸、
主变压器绝缘损坏等事故,直接影响了变电站的安全运行。
(2)覆冰。
在低温雨雪天气里,天气寒冷时,由于湿度高,大量水气
凝聚在导线表面造成覆冰,容易造成电力系统的冰冻灾害。覆冰时保杆两侧的张力不平衡,会出现导线断落冲击荷载造成
倒杆;结冰的电线遇冷会收缩,风吹引起震荡,
电线有时会因不胜重荷而断裂,即使不断舞动时间过长,也会使导线、塔杆、绝缘子和金具等受到不平衡冲击而疲劳损伤。由覆冰、舞动引起的输电线路倒杆(塔)、
断线及
跳闸事故会给电力系统的输电线路造成重大的损害,更会威胁到
电网的安全稳定运行和
供电系统运行的
可靠性。
(3)外力破坏。
外力破坏
电力线路引起的故障越来越多,情况也较复杂,分布面广。在山区,开山炸石很容易炸伤绝缘子、炸断导线;在线路经过的下方燃烧
农作物,火焰和浓烟易导致线路
跳闸;在线路保护区内施工的大型吊车、挖掘机有时会碰断导线,撞坏塔杆等;还有些不法分子受到经济利益的驱使盗窃塔材、拉线等电力设施;以及在输电线路下钓鱼、违章施工等。
常用术语
输电线路常用专业术语主要有:杆塔高度、杆塔呼称高度、悬挂点高度、线间距离、根开、架空地线保护角、杆塔埋深、跳线、导线的初伸长、档距、分裂导线、弧垂、限距、水平档距、垂直档距、代表档距、导线换位、导(地)线振动、杆塔。
1、杆塔高度:杆塔最高点至地面的垂直距离,称为杆塔高度。用H1表示。
2、杆塔呼称高度:杆塔最下层横担至地面的垂直距离称为杆塔呼称高度,简称呼称高,用H2表示。
3、悬挂点高度:导线悬挂点至地面的垂直距离,称为导线悬挂点高度,用H3表示。
4、线间距离:两相导线之间的水平距离,称为线间距离,用D表示。
5、根开:两电杆根部或塔脚之间的水平距离,称为根开。用A表示。
6、架空地线保护角:架空地线和边导线的外侧连线与架空地线铅垂线之间的夹角,称为架空地线保护角。
7、杆塔埋深:电杆(塔基)埋入土壤中的深度称为杆塔埋深。用h0表示。
8、跳线:连接承力杆塔(耐张、转角和终端杆塔)两侧导线的引线,称为跳线,也称引流线或弓子线。
9、导线的初伸长:当导线初次受到外加拉力而引起的永久性变形(延着导线轴线伸长),称为导线初伸长。
10、档距:相邻两基杆塔之间的水平直线距离,称为档距,一般用L表示。
11、分裂导线:一相导线由多根(有2根、3根、4根)组成型式,称为分裂导线。它相当于加粗了导线的“等效直径”,改善导线附近的电场强度,减少电晕损失,降低了对无线电的干扰,及提高送电线路的输送能力。
12、弧垂:对于水平架设的线路来说,导线相邻两个悬挂点之间的水平连线与导线最低点的垂直距离,称为弧垂或弛度。用f表示。
13、限距:导线对地面或对被跨越设施的最小距离。一般指导线最低点到地面的最小允许距离,常用h表示。
14、水平档距:相邻两档距之和的一半,称为水平档距
15、垂直档距:相邻两档距间导线最低点之间的水平距离,称为垂直档距。
16、代表档距:一个耐张段里,除弧立档外,往往有多个档距。由于导线跨越的地形、地物不同,各档距的大小不相等,导线的悬挂点标高也不一样,各档距的导线受力情况也不同。而导线的应力和弧垂跟档距的关系非常密切,档距变化,导线的应力和弧垂也变化,如果每个档距一个一个计算,会给导线力学计算带来困难。但一个耐张段里同一相导线,在施工时是一道收紧起来的,因此,导线的水平拉力在整个耐张段里是相等的,即各档距弧垂最低点的导线应力是相等的。我们把大小不等的一个多档距的耐张段,用一个等效的假想档距来代替它,这个能够表达整个耐张力学规律的假想档距,称之为代表档距或称为规律档距,用LO表示。
17、导线换位:送电线路的导线排列方式,除正三角形排列外,三根导线的线间距离是不相等。而导线的电抗取决于线间距离及导线半径,因此,导线如不进行换位,三相阻抗是不平衡的,线路愈长,这种不平衡愈严重。因而,会产生不平衡电压和电流,对发电机的运行及无线电通信产生不良的影响。送电线路设计规程规定“在中性点直接接地的电力网中,长度超过100km的送电线路均应换位”。一般在换位塔进行导线换位。
18、导(地)线振动:在线路档距中,当架空线受到垂直于线路方向的
风力作用时,就会在其背风面形成按一定频率上下交替的稳定涡流,在涡流升力分量的作用下,使架空线在其垂直面内产生周期性振荡,称为架空线振动。
19、杆塔:杆塔是支承架空线路导线和架空地线,并使导线与导线之间,导线和架空地线之间,导线与杆塔之间,以及导线对大地和交叉跨越物之间有足够的安全距离。
常规杆塔型号表示方法:
(1)按杆塔用途分类代号含义:
(2)按杆塔外形或导线布置型式代号含义: .
注意问题
路径选择
路径选择和勘测是整个线路设计中的关键,方案的合理性对线路的经济、技术指标和施工、运行条件起着重要作用。为了做到既合理的缩短路径长度、降低线路投资又保证线路安全可靠、运行方便,一条线路有时需要徒步往返3~5趟才能确定出最佳方案,所以线路勘测工作是对设计人员业务水平、耐心和责任心的综合考验。
在工程选线阶段,设计人员要根据每项工程的实际情况,对线路沿线地上、地下、在建、拟建的工程设施进行充分搜资和调研,进行多路径方案比选,尽可能选择长度短、转角少、交叉跨越少,地形条件较好的方案。综合考虑清赔费用和民事工作,尽可能避开树木、房屋和
经济作物种植区。
在勘测工作中做到兼顾杆位的经济合理性和关键杆位设立的可能性(如转角点、交跨点和必须设立杆塔的特殊地点等),个别特殊地段更要反复测量比较,使杆塔位置尽量避开
交通困难地区,为组立杆塔和紧线创造较好的施工条件。
杆塔选型
不同的杆塔型式在造价、占地、施工、运输和运行安全等方面均不相同,杆塔工程的费用约占整个工程的30%~40%,合理选择杆塔型式是关键。
对于新建工程若投资允许一般只选用1~2种直线
水泥杆,跨越、耐张和转角尽量选用
角钢塔,材料准备简单明了、施工作业方便且提高了线路的安全水平。对于同塔多回且沿规划路建设的线路,
杆塔一般采用占地少的
钢管塔,但大的转角塔若采用钢管塔由于结构上的原因极易造成杆顶挠度变形,基础施工费用也会比角钢塔增加一倍,直线塔采用钢管塔,
转角塔采用角钢塔的方案比较合理,能够满足环境、投资和安全要求。
针对多条老线路运行十几年后出现对地距离不够造成隐患的情况,在新建线路设计中适当选用较高的杆塔并缩小水平档距可提高导线对地距离。在线路加高工程中设计采用占地小、安装方便的酒杯型(Y型)钢管塔,施工工期可由传统杆塔的3~5天缩短为1天,能够减少施工停电时间。
基础设计
杆塔基础作为输电线路结构的重要组成部分,它的
造价、
工期和劳动消耗量在整个线路工程中占很大比重。其施工工期约占整个工期一半时间,运输量约占整个工程的60%,费用约占整个工程的20%~35%,基础选型、设计及施工的优劣直接影响着线路工程的建设。
根据工程实际
地质情况每基塔的受力情况逐地段逐基进行优化设计比较重要,特别对于影响造价较大的承力塔,由四腿等大细化为两拉两压或三拉一压才是经济合理的。
结束语
纵观近年来的输电建设工程,每项工程都有各自特点,设计中脱离工程实际,一味生搬硬套是无法保证设计质量与满足
电网发展需要的。只有结合实际,因地制宜,通过优化方案,科技攻关,不断探索与创新,才能满足建设坚强电网的要求,才能开创工程设计“技术先进、安全合理”的全新局面。
架线施工
在以往66kV及以上输电线路架线施工中,经常遇到个别导线由于施工中各种原因造成磨损,需要处理,为施工造成不便。
1 装卸、运输过程中导线磨损
导线在装卸、运输过程中易发生磨损的情况和防磨措施:
1.1导线线轴变形、线轴板丢失、线轴外保护层脱落。
采取措施:装卸、运输前需外观检查。
1.2线轴在运输车辆中滚动、翻转,与四周碰撞。
采取措施:运输过程中在线轴下方加设垫木等锚固措施,保证线轴不能随意滚动翻转,并保证线轴要立着摆放,不能水平倒放。
1.3装卸过程中吊装导线方法不当。
采取措施:采用吊车吊装导线线轴,轻装轻放,不得碰撞,且吊索长度要适当以免轮轴受吊索挤压变形。注意线轴侧板是否有损坏,及时处理防止磨伤导线。
2 放线过程中导线磨损
导线在张力放线过程中易发生磨损的情况和防磨措施:
2.1导线与线轴车摩擦。
采取措施:放线过程中,随时派专人看护线轴车,发现有摩擦情况随时停车变换线轴车方向或采取软物垫起等措施。
2.2导线换轴时,蛇皮套与导线接触损伤。
采取措施:蛇皮套使用前检查其质量,看是否有易划伤导线的硬物,并且在使用时做到轻拿轻放。
2.3导线放线过程中与放线档内跨越物摩擦。
采取措施:在张力放线施工前,必须计算架线张牵力,保证对跨越物和跨越架距离,在计算不能保证对其摩擦的情况下,则需采取如:下导线上提等措施。
2.4导线与牵引绳、导引绳摩擦。
采取措施:展放导线和导引绳、牵引绳应避免摩擦,排定展放顺序。确定导线展放与导引绳、牵引绳展放弛度保持互相无接触,派专人在放线过程中在各个塔位对放线过程进行监控。
2.5牵引板翻等情况过耐张塔导线磨损。
采取措施:耐张塔两侧高差较大的,双滑车应不等高悬挂。为保证辆花车受力一直,应注意其意为、定位和钢绳套连接长短,根据高差、档距、张力及转角度数进行计算后再施工。如耐张塔上扬,可在地面根据转角大小,倒挂一个或两个滑车。放、紧线施工调整导线张力要平稳防止冲击,放线过程中严格监视各档情况。发现钱详细检查旋转连接器质量,转动灵活程度。
2.6升空操作,牵引绳索与导线摩擦、导线互磨、释放压线钢绳、升空时导线在滑车中跳槽等过程磨损导线。
采取措施:升空应根据导线升空后方位,先升远方导线并依次升空,防止牵引绳索或导线之间较差碰撞。释放到西安压绳应用软绳并防止导线与压绳相互摩擦,升空前压接时应根据沿线各档交叉跨越对地情况,尽量减少导线余线长度,使升空后导线保持对地安全净空距离。
2.7导线地面锚线部分与工器具之间磨损。
采取措施:导线与工器具之间需使用防磨措施,比如锚线过程中锚线钢锚、临锚钢绳、卡线器采用挂胶处理,导线套胶管。
2.8导线与地面接触磨损。
采取措施:导线落地前地面应铺设彩条布、草垫、苫布等保护隔离设施,保护导线不与地面直接接触,并在下方垫设支架使其离开地面并设专人保护。
3 附件安装过程中导线磨损
3.1导线起吊工具与导线磨损。
采取措施:使用已挂胶的起吊绳及吊钩,吊钩与导线接触长度大于50mm。
3.2间隔棒安装过程中导线磨损。间隔棒安装过程中飞车安装护线胶管,飞车速度不宜过快,要平稳匀速前进,飞车下坡过程中刹车按速度使用,过悬垂线夹时两人操作,在活门出入口处导线上预先安装护线胶管。