逆散射是根据给定的入射波和测得的散射波研究散射体的特性,确定其几何形状或物理参数的分布。由散射场求出散射体特性的反演方法是建立在电磁散射理论基础上的。逆散射理论与方法广泛应用于遥感、无损探测、地球物理、医用成像和雷达目标识别等领域。
根据给定的入射波和测得的散射波研究散射体的特性。它是散射问题的逆问题。由散射波场到散射体特性的反演关系或反演方法,是在散射理论的基础上获得的。逆散射理论与反演技术已成为研究各种工程技术和科学问题的一种重要手段。例如,用多频率或双极化测量雨反射率、雨衰减或多普勒谱,可确定雨滴大小分布;在多个频率或仰角测量大气辐射噪声温度,可推断大气层温度或湿度分布等。逆散射理论与方法广泛应用于遥感、无损探测、地球物理、医用成像和雷达目标识别等方面。有两类逆散射问题,一类是求物体某些物理参数的分布;另一类是根据散射波探求目标物体的几何形状。
①求物体某物理参数的分布,如等离子体的电子密度剖面。等离子体分布在x>0的半无界空间,其电子密度是x坐标的函数,记为N(x)。平面电磁波沿x轴入射到等离子体上,产生反射与透射波(一维情况下的散射)。通常的正问题是由等离子体上的波方程
逆散射理论具有广阔的研究领域。例如,测量中若只得到散射波的强度或
微分散射截面,而未得到复振幅中的相位因子,即在测量中丢失了相位信息,通过适当的分析和处理可重新获得,这一问题称为相位恢复或相位重建。又如,根据空间某一曲面上的波场分布,寻求波传播到此曲面以前在另一曲面上的分布,称为逆衍射问题。此外,还可确定随机介质或粗糙表面的某种统计特性等。
关于解的存在性、唯一性和稳定性的研究,是反演理论中的重要数学问题。例如,根据散射场的测量数据,特别是有限区域中的测量数据,往往不能唯一地确定散射体。有时,测量数据的某种微小误差会导致反演结果的极大误差,因而解是不稳定的。违背上述关于解的三个要求中的一个或数个的问题称作不适定问题,逆散射问题往往属于不适定问题。为了去掉不适定性,需要一些附加的限定条件,这种附加条件也称为先决认识。这种先决认识,可从一般原理、假设、其他实验结果以及对所做实验施加的某种限制等推导而知。例如,将散射体区分为理想导体、介质弱散射体或等离子体等,便属于对目标物体的先决认识。