逻辑斯蒂增长曲线是一种由比利时数学家Verhulst首次发现的特殊曲线。后来,R.Pearl和L.J.Reed根据这一理论研究人口增长规则,因此,逻辑斯蒂增长的曲线也被称为生长曲线或珍珠里德曲线。
逻辑斯蒂增长模型又称自我抑制性方程。用
植物群体中发病的普遍率或严重度表示病害数量(x),将环境最大容纳量k定为1(100%),逻辑斯蒂模型的微
分式是:
式中的r为速率参数,来源于实际调查时观察到的症状明显的病害,范.德.
普朗克(1963)将r称作表观侵染速率(apparent infection rate),该方程与指数模型的主要不同之处,是方程的右边增加了(1-x)修正因子,使模型包含自我抑制作用。
当x=0.5时,逻值(ln(x/(1-x))等于0;x<0.5时,逻值为负值;x>0.5时,逻值为正值。S型曲线的直线化,就是将病情(x)百分率转换成逻值后,用普通
坐标纸以逻值为纵坐标对时间(t)作图,则病情进展曲线就成为一条直线,也称逻值线。逻值线与纵轴相交的截点,为初始病害数量(x0),逻值线的斜率就是病害的流行速度,即表观侵染速率。
对于预测模型的计算,首先应该确定模型的参数,这就涉及到参数的估计和预测问题。为了达到更好的预测精度,先采用最小二乘回归方程法(OLS),再结合0.618最佳寻求方法优化逻辑斯蒂增长模型。
为了方便计算,将逻辑斯蒂曲线模型的非线性转变为线性关系。首先,将逻辑斯蒂曲线公式2的模型进行简单的变换,再对公式3双边取对数,它会成为一个线性关系如公式4,5和6所示。这使得它易于通过使用的历史数据建立增长预测模型。
因为仅仅靠预测模型,一次达到较高的预测精度较为困难,为此可以采用对模型进一步选优的方法,来提高预测精度。所以模型的优化方法是根据华罗庚提出0.618选优法,对得到的模型,计算该模型是否能得到预测值和测量值最小
残差平方和。