金刚石(diamond),俗称“金刚钻”,它是一种由
碳元素组成的矿物,是石墨的
同素异形体,化学式为C,也是常见的钻石的原身。金刚石是自然界中天然存在的最坚硬的物质。
石墨可以在高温、高压下形成
人造金刚石。金刚石的用途非常广泛,例如:工艺品、工业中的切割工具,也是一种贵重宝石。
计算化学数据
主要特征
物理性质
硬度
莫氏硬度10,新莫氏硬度15,显微硬度约7000-10000kg/mm2,显微硬度比石英高1000倍,比刚玉高150倍。金刚石硬度具有方向性,八面体晶面硬度大于菱形十二面体晶面硬度,菱形十二面体晶面硬度大于六面体晶面硬度。
依照莫氏硬度标准(Mohs hardness scale)共分10级,钻石(金刚石)为最高级第10级;如小刀其硬度约为5.5、铜币约为3.5至4、指甲约为2至3、玻璃硬度为5.5-6。
由于硬度最高,金刚石的切削和加工必须使用金刚石粉或激光(比如532nm或者1064nm波长激光)来进行。金刚石的密度为3.52g/cm3,折射率为2.417(在589纳米光波下),色散率为0.044。
2021年8月,新型非晶材料(AM-III)在燕山大学亚稳材料制备技术与科学实验室成功合成。据专家介绍,AM-III密度与金刚石相当,维氏硬度HV高达113 GPa,可划伤单晶金刚石。
颜色
金刚石有各种颜色,从无色到黑色都有,以无色的为特佳。它们可以是透明的,也可以是半透明或不透明。许多金刚石带些黄色,这主要是由于金刚石中含有杂质。 金刚石的折射率非常高,色散性能也很强,这就是金刚石为什么会反射出五彩缤纷闪光的原因。金刚石在X射线照射下会发出蓝绿色荧光。金刚石原生矿仅产出于金伯利岩筒或少数钾镁煌斑岩中。金伯利岩等是它们的母岩,其他地方的金刚石都是被河流、冰川等搬运过去的。金刚石一般为粒状。如果将金刚石加热到1000℃时,它会缓慢地变成石墨。
引用亚洲宝石协会(GIG)报告:金刚石的化学成分为C,与石墨同是碳的同质多象变体。在矿物化学组成中,总含有微量Si、Mg、Al、Ca、Mn、Ni等元素,并常含有Na、B、Cu、Fe、Co、Cr、Ti、N等杂质元素,以及碳水化合物。
金刚石矿物晶体构造属等轴晶系同极键四面体型构造。碳原子位于四面体的角顶及中心,具有高度的对称性。单位晶胞中碳原子间以同极键相连结,距离为154pm。常见晶形有八面体、菱形十二面体、立方体、四面体和六八面体等。
金刚石的绝对硬度是刚玉的4倍,石英的8倍。详细绝对硬度如下:
金刚石:10000-7000 kg/mm2
刚玉:2500-2100 kg/mm2
石英:1550-1200 kg/mm2
矿物性脆,贝壳状或参差状断口,在不大的冲击力下会沿晶体解理面裂开,具有平行八面体的中等或完全解理,平行十二面体的不完全解理。矿物质纯,密度一般为3470-3560kg/m3。金刚石的颜色取决于纯净程度、所含杂质元素的种类和含量,极纯净者无色,一般多呈不同程度的黄、褐、灰、绿、蓝、粉红、乳白和紫色等;纯净者透明,含杂质的半透明或不透明;在阴极射线、X射线和紫外线下,会发出不同的绿色、天蓝、紫色、黄绿色等色的荧光;在日光曝晒后至暗室内发淡青蓝色磷光;金刚光泽,少数油脂或金属光泽,高折射率,一般为2.40-2.48。
化学性质
金刚石是在地球深部高压、高温条件下形成的一种由碳元素组成的单质晶体。金刚石是无色正八面体晶体,其成分为纯碳,由碳原子以四价键链接,为自然存在已知最硬物质。由于金刚石中的C-C键很强,所有的价电子都参与了共价键的形成,没有自由电子,所以金刚石硬度非常大,常压熔点约为3550℃(华氏6422度),金刚石在纯氧中燃点为720~800℃,在空气中为850~1000℃,而且纯净金刚石不导电,含硼金刚石为半导体。
结构性质
金刚石结构分为等轴晶系四面六面体立方体与六方晶系。
在金刚石晶体中,碳原子按四面体成键方式互相连接,组成无限的三维骨架,是典型的原子晶体。每个碳原子都以sp3杂化轨道与另外4个碳原子形成共价键,构成正四面体。由于金刚石中的C-C键很强,所以所有的价电子都参与了共价键的形成,没有自由电子,所以金刚石不仅硬度大,熔点极高,而且不导电。在工业上,金刚石主要用于制造钻探用的探头和磨削工具,形状完整的还用于制造首饰等高档装饰品,其价格十分昂贵。
光学性质
(1) 亮度(Brilliance)金刚石因为具有极高的反射率,其反射临界角较小,全反射的范围宽,光容易发生全反射,反射光量大,从而产生很高的亮度。
(2) 闪烁(Scintillation)金刚石的闪烁就是闪光,即当金刚石或者光源、 观察者相对移动时其表面对于白光的反射和闪光。无色透明、结晶良好的八面体或者曲面体聚形金刚石,即使不加切磨也可展露良好的闪烁光。
(3) 色散或出火(Dispersion or fire)金刚石多样的晶面像三棱镜一样,能把通过折射、反射和全反射进入晶体内部的白光分解成白光的组成颜色——红、橙、黄、绿、蓝、靛、紫等色光。
(4) 光泽(Luster)金刚石出类拔萃般坚硬的、平整光亮的晶面或解理面对于白光的反射作用特别强烈,而这种非常特征的反光作用就叫作金刚光泽。
金刚石还具有非磁性、不良导电性、亲油疏水性和摩擦生电性等。唯IIb型金刚石具良好的半导体性能。根据金刚石的氮杂质含量和热、电、光学性质的差异,可将金刚石分为I型和II型两类,并进一步细分为Ia、Ib、IIa、IIb四个亚类。I型金刚石,特别是Ia亚型,为常见的普通金刚石,约占天然金刚石总量的98%。I型金刚石均含有一定数量的氮,具有较好的导热性、不良导电性和较好的晶形。Ⅱ型金刚石极为罕见,含极少或几乎不含氮,具有良好的导热性和曲面晶体的特点。IIb亚型金刚石具半导电性。由于Ⅱ型金刚石的性能优异,因此多用于空间技术和尖端工业。
分类
根据金刚石的来源和成因的不同,可以将金刚石划分为幔源型金刚石、超高压变质型金刚石和陨石相关型金刚石不同类型的金刚石在全球的分布具有不均一性。杨经绥等(2013)通过大量的研究工作,提出了一种新的类型的金刚石,即蛇绿岩型金刚石(或罗布莎型金刚石),并将其与上述3种类型的金刚石进行了较为详细的对比和介绍。蛇绿岩型金刚石产出于蚀变的幔源岩石——蛇绿岩,也应归属于幔源型金刚石。
物质区别
石墨和金刚石都属于碳单质,它们的化学性质完全相同,但金刚石和石墨不是同种物质,它们是由相同元素构成的同素异形体。 所不同的是物理性质与微观结构特征。
二者的化学式都是C。
石墨原子间构成正六边形是平面结构,呈片状。
金刚石原子间是立体的正四面体结构。
金刚石和石墨的熔点比较:
金刚石的熔点是3550℃,石墨的熔点是3652℃~3697℃(升华)。石墨熔点高于金刚石。
从片层内部来看,石墨是原子晶体;从片层之间来看,石墨是分子晶体(总体说来,石墨应该是混合型晶体);而金刚石是原子晶体。石墨晶体的熔点反而高于金刚石,似乎不可思议,但石墨晶体片层内共价键的键长是1.42×10-10m,金刚石晶体内共价键的键长是1.55×10-10m。同为共价键,键长越小,键能越大,键越牢固,破坏它也就越难,也就需要提供更多的能量,故而熔点应该更高。 (主要就是石墨的原子晶体属性导致它的熔点变高)
人造金刚石
合成方法
人工合成金刚石的方法主要有两种,高温高压法(HPHT)及化学气相沉积(CVD)法。
高温高压法技术已非常成熟,并形成产业。国内产量极高,为世界之最。
化学气相沉积法仍主要存在于实验室中。郑州大学单崇新教授团队开发出化学气相沉积方法合成金刚石单晶和克拉级金刚石的工艺,合成出质量1.2克拉以上、颜色优白级、净度SI1级的高品相金刚石。已知世界最大的CVD合成金刚石有155克拉,为2012年由德国的单位制造的板状晶体。
工业用途
人造金刚石作为功能性材料,在声、光、电、磁、热等多个领域:如宽禁带半导体功能器件、热沉材料、光学窗口、污水处理、生物医学等方面都有广阔的应用前景,若金刚石粉末涂在音响纸盆上,音箱音质会大为改善。但就目前来说,人造金刚石结构性材料应用占比超过90%,功能化应用占比不足10%。
产业分布
从全国产业分布区域来看,河南省拥有超硬材料全产业链优势,精密加工领域主要集中在长三角和珠三角,锯切钻进类工具主要集中在福建、广东、江西、湖北、湖南等地。”孙兆达说,就河南省而言,全省人造金刚石产业以郑州市为中心,许昌市、商丘市、信阳市、南阳市、焦作市、洛阳市等分布着行业相关的产业企业,这些企业在全国都非常具有竞争力。
从产业规模来看,中国人造金刚石单晶产量占全球的95%。2022年美国进口人造金刚石中,中国金刚石占比达到78%;欧盟28国进口人造金刚石中,中国金刚石占比达到75%;印度进口人造金刚石中,中国金刚石占比达到90%;日本进口人造金刚石中,中国金刚石占比达到81%。
人造钻石与天然钻石的比较
从材料角度看,培育钻石和天然钻石均为纯碳构成的晶体,拥有完全一致的物理、化学、光学等性质。培育钻石是真正的钻石也早已得到普遍承认。2018年,美国联邦贸易委员会(FTC)更改了已沿用60余年的钻石定义,将“天然”二字从定义中删除,承认培育钻石也是钻石。除了切工受人工影响因素较大外,培育钻石在色泽、净度、克拉重量三个方面已可与天然钻石平起平坐。
在色泽方面,高品质的培育钻石已可达到最高的D级——透明无色,这与顶级的天然钻石基本一致;
在净度上,最高级别的培育钻石可以达到VVS级——即只有极轻微瑕疵,这超过了主流天然钻石的VS级,但仍与顶级天然钻石完全无瑕的FL/IF级有一步之遥;克拉重量则是培育钻石最大的竞争力。
主要产地
伯纳特兄弟于1870年发现了金伯利金刚石矿。正是这一发现,使人们知道了在哪种岩石中有可能含有金刚石。
原来,那是一种在远古时代的岩浆冷却以后所形成的火山岩。接着,研究者又发现,在这种火山岩中除了金刚石,还含有被称为镁铝石榴石和橄榄石的两种矿物。因此,在那些出产镁铝石榴石和橄榄石的地点,找到金刚石矿的可能性就相对大。于是,石榴石和橄榄石就成为寻找金刚石的“指示矿物”。
根据指示矿物来寻找金刚石矿的方法并不是在哪一天突然发现的。上世纪70年代,美国史密森研究所的地球化学家约翰·贾尼在仔细研究了石榴石和金刚石之间的关系后发表了他的研究结果。但是,在那之前,即上世纪50年代,德比尔斯公司的地质人员早就根据指示矿物在世界各地寻找金刚石矿了。
世界各地都发现了金刚石矿。其中,澳大利亚、刚果、俄罗斯、博茨瓦纳和南非是著名的五大金刚石产地。
美国马萨诸塞大学的地球物理学家史蒂文·哈格蒂博士在1999年研究了世界各地含有金刚石的熔岩的年代,结果发现,这些含有金刚石的熔岩至少是在过去7个不同的时期在各地喷出的岩浆所形成的,其中最古老的熔岩则是在大约10亿年前形成的。在这7个岩浆喷发时期中,以在非洲各地和巴西等地区于1.2亿年前至8000万年前喷出的岩浆中所含有的金刚石为最多。那时正值恐龙时代极盛期的中生代白垩纪。含有金刚石的熔岩,最晚的,是在2200万年以前喷出的岩浆形成的。至于在那以后形成的熔岩中是否含有金刚石,则还无法肯定。
1971年以来的二十年中,在中国陆续发现了几颗50克拉以上和100克拉以上的金刚石,按发现时间的先后排列如下:
据1987年资料,中国主要金刚石成矿区有:①辽东—吉南成矿区,有中生代和中古生代两期金伯利岩。②鲁西、苏北、皖北成矿区,下古生代可能有多期金伯利岩。③晋、豫、冀成矿区,已在太行山、嵩山、五台山等地发现金伯利岩。④湘、黔、鄂、川成矿区,已在湖南沅水流域发现了4个具工业价值的金刚石砂矿。
湖南金刚石,产于湖南省常德丁家港、桃源、黔阳等地。湖南金刚石以砂矿为主,主要分布在沅水流域,分布零散,品位低,但质量好,宝石级金刚石约占40%。相传在明朝年间,湖南沅江流域就有零星的金刚石发现,大规模的寻矿则始于二十世纪五十年代。沅江整个水域均有金刚石分布,但有开采价值的仅常德丁家港、桃源县车溪冲、溆浦县(黔阳)新庄垅、沅陵县窑头等4处。
湖南金刚石的颜色深浅不一,内外颜色差异明显,呈带状、斑状分布。其褐色系列金刚石,晶体呈黄褐色,内部洁净,表面有大量的褐色斑点,其褐斑的颜色有黄色、黄褐色、褐色、黑色等,主要分布在金刚石的溶蚀面上,褐色主要由自然界放射性粒子的辐照造成。金刚石总体颗粒小,但质地较好,以单晶为主,约占总产量的98%;晶体比较完整,以八面体、十二面体、六八面体为多;绝大多数晶体浅色透明或呈黄、褐色等;粒重多小于28mg,一般为10.9~15mg;22%晶体中含包裹体;60%的晶体表面有裂纹,表面溶蚀不重。
2018年12月,加拿大出土了一颗重量高达552克拉的黄色金刚石,这使它成为了在北美洲发现的最大的一颗金刚石。美国媒体15日报道,该颗金刚石长33.74毫米,宽54.56毫米,由统领钻石公司于10月份在加拿大西北地区的戴维科钻石矿区发现。
世界上最大的工业用金刚石和宝石级金刚石都超过3100克拉(1克拉 = 0.2克 = 200毫克)。其中宝石级金刚石的尺寸为10×6.5×5厘米,名叫“库利南”,1905年发现于南非的普雷米尔岩管。中国常林金刚石,重158.786克拉,于1977年被山东临沭县常林大队女社员魏振芳发现,后列为世界名钻。世界金刚石主要产地有南非、澳大利亚、扎伊尔【现称:刚果(金)】、博茨瓦纳、俄罗斯。
用途
工业用途
金刚石是目前工业化生产的最硬材料,其前通常利用其硬度特性广泛地作为加工、研磨材料。但它除了具有高硬度之外,其许多优异特性被逐渐发现和挖掘,如室温下高热导率、极低的热膨胀系数、低的摩擦系数、良好的化学稳定性、大的禁带宽度(5.5eV)、高的声传播速度、掺杂诱导的半导体特性以及高的光学透过率,使其在机械加工、微电子器件、光学窗口及表面涂层等许多领域有着广阔的应用前景。因此,金刚石材料的功能特性研究与应用引起了人们极大的兴趣,并在很多领域取得了突破和进展。
金刚石作为半导体的应用
根据是否含有N元素,金刚石分为I型和II型两种:I型含;II型不含。而蓝色的金刚石是IIb型的,是半导体。金刚石具有非常优异的电学性质,例如其禁带宽度可以达到5.5eV,电阻率在1010Ψ·cm以上,介电常数可以达到5.5,理论上金刚石是可以用作条件极端恶劣的辐射环境中的探测器材料的。在金刚石辐射探测器方面的研究开始得很早,从天然金刚石到HPHT金刚石再到CVD金刚石薄膜。
金刚石作为一种宽禁带半导体,在光电子学中的应用前景无疑是最引人注目的。但是由于n型金刚石半导体掺杂存在着一定的困难,使制备同质结的困难加大,目前领先的依然是麻省理工学院有关于金刚石薄膜p-n结的研究,2001年麻省理工学院的Koizumi等第一次制备了金刚石薄膜p-n结,在金刚石单晶的(111)面上以同质外延生长的方法制备了两层金刚石薄膜,p型半导体使用B元素掺杂金刚石薄膜而成,n型半导体则以P元素掺杂制备,然后他们对这个装置进行了改进,在施加20V偏压电路的情况下,装置被激发出了紫外光,并且指出,该装置可以在高温下运作。Alexov A等则在掺杂B元素后的金刚石薄膜上用同质外延法制备了一层掺杂N元素的金刚石薄膜,但是并没有详细报道此p-n结的电致发光等特性。
在紫外探测器方面的研究与应用
金刚石紫外探测器的研制一直是国防和太空科技的重要研究内容,国外多家科研机构都开始了这方面的研究工作,对此周海洋等做了很详细的归纳和总结。目前金刚石探测器不能令人如意的地方主要是由于多晶材料的杂质和缺陷造成的信号问题,金刚石探测器的突破其实还是依赖于合成金刚石的品质,人工合成金刚石制备的探测器信号比天然金刚石小,响应的空间均匀性更加有待改进。
量子计算机用单光子源方面的研究与应用
高效单光子源的发展是量子计算、量子密码技术以及量子网络等量子信息处理的重要基础,单光子控制则是量子计算机建设和加密的重要手段。金刚石N-V缺陷的荧光发射波长为637nm,单一的含Ni杂质的金刚石则在近红外存在荧光发射,这两个缺陷发光都有成为高效单光子源的可能。
声波材料电子封装材料方面的研究与应用
信息产业对基板和封装材料的性能如高热导率、低热膨胀系数、低介电常数和良好的热稳定性等提出了越来越高的要求。金刚石的导热率很高,绝缘性能极佳,介电常数很低,这些特性是金刚石十分符合电子封装材料的基本要求。其实在声波材料中,金刚石薄膜一般还是作为基板材料存在的,应用的也依然是高导热性等上述的优良性质。
移动通信技术的迅猛发展扩大了高频声表面波(SAW)器件的应用范围,金刚石因具有最高的声表面波传播速度(10000min/s)而使得压电薄膜/金刚石多层结构成为高频声表面波器件的首选材料。
慢性毒药
文艺复兴时期,用金刚石粉末制成的慢性毒药曾流行在意大利豪门之间。当人服食下金刚石粉末后,金刚石粉末会粘在胃壁上,在长期的摩擦中,会让人得胃溃疡,不及时治疗会死于胃出血,是种难以让人提防的慢性毒剂。
观赏宝石
钻石由于折射率高,在灯光下显得闪闪生辉。巨型的美钻可以价值连城。而掺有深颜色的钻石的价钱更高。最昂贵的有色钻石,要数红色钻石,截至2024年经过GIA认证为红色域的1ct以上红色钻石刻面不超过50粒,其次为蓝色、粉色、绿色等彩色钻石。
真钻的检测方法
X射线的检测原理:X射线属于高能粒子流,对于各种物质均有一定程度的穿透作用。如果将人体置于X线发生装置和照相胶片之间那么骨骼等部位X射线衰减严重以至于无法透过,因此骨骼部分的胶片不能感光,骨骼的影像就会显现出来;而脂肪、脏器等组织,X射线可以顺利穿透,通过光化学作用使胶片感光,将胶片上的卤化银分解为银,呈黑色。胶片上黑白灰交织的影像就是这样得来的。
钻石是碳元素组成的无色晶体,而碳元素的原子序数是6,非常小,带入公式可以发现钻石的衰减系数小,X射线大部分透钻石而过,所以把钻石直接放在X光机下是很难检测到的。
但与医院需要查清人体内脏的方法一样,如果让人服下X射线对比剂,情况就大不相同了。一般情况下,医院会让患者口服硫酸钡,俗称“钡餐”,钡的原子序数是56,X射线不易透过,在X光下呈黑色。利用这种方法,钻石就无处遁形了。
除此之外,机场用的X射线安检仪拥有两组探测器阵列,能分别探测高能量和低能量射线信号,将两种信号进行比对,就能够获得被检物品的有效原子序数,从而区分出各种物质。使用这种方法,显然钻石也能被发现。
因此,不能因为钻石的衰减系数小就笼统地说 “真钻在X线下无法发现”。实际上,很多矿石公司正是运用X光机,在下班时进行检查,防止员工偷带钻石的。