锁钥学说特指对酶反应机制的一种描述。底物与酶结合形成复合体,酶上的结合部位(即活性部位)在结构上与底物互补以致底物与酶吻合,正如钥匙和锁吻合一样。 它是解释酶专一性的
理论,虽然已经过时,但是解释得很形象。
2. 锁钥学说:酶的活性中心的构象与底物的结构(外形)正好互补,就像锁和钥匙一样是刚性匹配的,这里把酶的活性中心比作钥匙,底物比作锁。
1.诱导锲合学说定义:为了说明底物与酶结合的
特性,在锁钥学说的基础上提出的一种学说。底物与酶活性部位结合,会引起酶发生构象变化,使两者相互契合,从而发挥催化功能。
2.学说内容:这是为了修正锁钥学说的不足而提出的一种理论。它认为,酶的活性中心与底物的结构不是刚性互补而是柔性互补。当酶与底物靠近时,底物能够诱导酶的构象发生变化,使其活性中心变得与底物的结构互补。就好像手与手套的关系一样。该理论已得到实验上的证实,电镜照片证实酶“就像是长了眼睛一样”。
3.钙离子通道定义:它是一种跨越细胞膜的结构,它严格控制着钙离子进入细胞的过程。由于钙离子信号与很多重要生理功能相关,例如心脏收缩、基因转录等,因此调节钙离子进入细胞的精确反馈机制就至关重要。为了实现这一功能,每个钙离子通道都与一个
钙调蛋白分子(calmodulin CaM)结合,从而通过钙离子与其羧基端小叶(C-lobe)和氨基端小叶(N-lobe)的结合实现对通道活性的调节。钙调蛋白与钙离子形成的复合物是构成钙离子感受器的重要原型,钙离子感受器与钙离子源密切相关。CaM的羧基端小叶能感应局域的钙离子大幅振荡,这是由于主通道的钙离子流引起的。而氨基端小叶则感应全局的较远距离源引起的钙离子小型改变。然而,尽管以上现象在生物学上非常重要,但其内部
机制尚不清楚。
在2008年6月27日出版的《细胞》(Cell)上,来自美国的一组科学家发表文章称,他们提出了一种全新理论来说明全局选择性是如何出现的,并且从实验上证实了这一理论的正确性。在研究中,科学家利用一种新方法实现了对于钙离子振荡的毫秒级别控制。结果发现,全局选择性产生于CaM结合于通道之后的快速钙离子释放。
尽管CaM的C-lobe和N-lobe感受着完全相同的钙离子信号,它们却选择性的与产生于不同空间区域的钙离子信号发生反应。研究人员发现,CaM的C-lobe利用一种“慢CaM”(slow CaM)机制来选择产生于自身通道的钙离子信号,这类似于放大镜,而N-lobe则利用一种“SQS”机制来选择来自较远距离通道的信号,这类似于
双筒望远镜。特别值得注意的是,SQS机制产生的空间选择性能得到调整,这或许能产生非常重要的生理学结果。