铰链力矩是指流过
舵面的气流对舵轴形成的空气力矩。执行机构一般是通过机械传递控制舵面的偏转,为了使舵面偏转到需要的位置,必须克服作用在舵轴上的铰链力矩。
铰链力矩的极性与舵面气动力压力中心的位置有关。如果舵面的压力中心位于舵轴的前方,则铰链力矩的方向将与主动力矩的方向相同,从而引起反操纵现象。如果舵面转轴离舵面压力中心比较近,当压心发生变化时,舵就有可能成为静不稳定的,以致出现反操纵现象。当飞行器处于亚音速和超音速的不同飞行状态时,压力中心就会发生明显的变化。因此在确定舵机的控制力矩时,必须留有足够的余量。在设计时,应尽量克服反操纵,使系统具有结构稳定性。
铰链力矩对导弹的操纵起着很大的作用。对于由自动驾驶仪操纵的导弹来说,推动操纵面的舵机的需用功率取决于铰链力矩的大小。对于有人驾驶的飞机来说,铰链力矩决定了驾驶员施予驾驶杆上的力的大小,铰链力矩越大,所需杆力也越大。
铰链力矩试验的目的是测定飞行器的各操纵面(或称舵面,如副翼、方向舵、升降舵或全动平尾)所作用的气动力对转轴中心线(称铰链轴线)的力矩,从而可得到操纵舵面所需的功率,为选择或设计合适的操纵装置提供依据;同时在进行舵面设计时,铰链力矩的大小及压力中心位置是选择舵面形状及转轴位置的重要依据。因此,测量舵面铰链力矩的同时通常也要测量舵面的法向力。在做铰链力矩试验时,要求测铰链力矩的天平一般要具有三个分量,即舵面上的法向力、铰链力矩、法向力绕飞行器轴线的
滚转力矩。
舵面铰链力矩可以采用测量舵面压力分布或直接测量作用在舵面上气动力的方法获得。前者无论模型加工还是试验工作量都比较大,而且压力分布积分得到的铰链力矩系数的准度不高,故很少使用,只有在测力受到限制时才采用,因此通常采用天平测力的方法。