②当电源没有接入电路时,因无电流通过内电路,所以U内=0,此时E=U外,即电源电动势等于电源没有接入电路时的路端电压。
③式E=I (R+r)只适用于外电路为
纯电阻的闭合电路。U外=E-Ir和E=U外+U内适用于所有的闭合电路。
相关定义
③内电压:当电路中有电流通过时,内电路两端的电压叫内电压,用U内表示。
⑤外电压:外电路两端的电压叫外电压,也叫
路端电压,用U外表示。
⑥电动势:
电动势表示在不同的电源中非静电力做功的本领,常用符号E(有时也可用ε)表示。
功率计算
路端电压与电动势
E+K=0 E=U外
当外电路接通,电路中将出现电流,这时上式应代之以
E+K=j/σ
路端电压与外电阻R
当外电阻R增大时,根据可知,电流I减小(E和r为定值);内电压Ir减小,根据U外=E―Ir可知路端电压U外增大;当外电路断开时,I=0,此时U外=E。当外电阻R减小时,根据可知,电流I增大;内电压Ir增大。根据U外=E―Ir可知路端电压U外减小;当电路短路时,R=0,,U外=0。
①当外电路断开时,R=∞,I=0,Ir=0,U外=E,此为直接测量电源
电动势的依据。
②当外电路短路时,R=0,(短路电流)I=E/r,U外=0,由于电源内阻很小,所以短路时会形成很大的电流,这就要求我们绝对不能把电源两极不经负载而直接相连接。
电路功率
电源的总功率为P总=IE(普遍适用),
电源内阻消耗的功率为P内=I2r,电源的输出功率为P出=IU外(只适用于外电路为纯电阻的电路)。
电源输出的最大功率:P=I2×R→Pmax=E2/4r(r为电源内阻)
功率分配关系
P=P出+P内,即EI=UI+I2×r。
闭合电路上功率分配关系,反映了闭合电路中能量的转化和守恒,即电源提供的电能,一部分消耗在内阻上,其余部分输出给外电路,并在外电路上转化为其它形式的能,能量守恒的表达式为:EIt=UIt+I^2rt(普遍适用) EIt=I^2Rt+I^2rt(只适用于外电路为纯电阻的电路)。
电源效率
(只适用于外电路为纯电阻的电路)
由EIt=I2Rt+I2rt可知,
外电阻R越大,电源的效率越高。
输出功率最大时,R=r,此时电源的效率η=50%。当R>r时,外电阻R越大,电源的输出功率越低。(输出功率与电阻关系图像类似山峰轮廓,但不对称。)
当两个外电路符合R1×R2=r2时,两个电路输出功率相等。
η=U/E=R/R+r(适用于外电路为纯电阻的电路)
电阻功率
当电路中的电流最大时定值电阻上消耗的功率最大。当为
滑动变阻器时分析要看具体的情况,可结合电源的输出的最大功率的关系,把滑动变阻器以外的电阻看做电源的
内电阻,此时电路可等效成为一个新电源和滑动变阻器组成的新电路,然后利用电源输出的最大功率的关系分析即可。
内容
闭合电路里的电流,跟电源的
电动势成正比,跟整个电路的电阻成反比。
公式
I=E/(R+r)
路端电压与外电阻
(1)当外电阻R增大时,根据I=E/(R+r)可知,电流I减小(ε和r为定值),内电压Ir减小,根据U=ε-Ir可知路端电压U增大。
特例
当外电路断开时,R=∞,I=0,Ir=0,U=ε。
(2)当
外电阻R减小时,根据I=E/(R+r)可知,电流I增大,内电压Ir增大,根据U=ε-Ir可知
路端电压U减小。
特例
当外电阻R=0(短路)时,I=E/r,内电压Ir=ε,路端电压U=0。
定律扩展
电动势与电压的区别
电动势是对电源而言的,它描述移送单位
电量时非静电力做功的多少,即移送1库电量时其他形式的能转化为
电能的多少。
电压是对某一段电路而言的,它描述在这段电路中移送单位电量时电场力做功的多少,即移送1C电量时电能转化为其他形式能的多少。
两者是截然不同的物理量,万勿混淆,顺便指出,从能量转化观点来说,
电势差、电压、电压降、电压损失等,都表示
电场力移送单位电量时电能转化为其他形式能的多少,只不过是几种形式不同的说法而已,习惯上在静电学中常用“电势差”的说法;在电路问题中常用“电压”的说法;在串联分压电路中,常把分压电阻上的电压叫做“电压降”;在远距离输电问题中,输电导线上的电压是没有利用价值的,常叫做“电压损失”。
能量转化
从能量转化观点看,闭合电路中同时进行着两种形式的能量转化:一种是把其他形式的能转化为电能,另一种是把电能转化为其他形式的能。设一个
正电荷q,从
正极出发,经外电路和内电路回转一周,则在内、外电路上能量的转化情况如下:
在外电路中,正电荷q是在
电场力作用下克服
外电阻的阻碍,从正极移向
负极的,在此过程中电场力推动电荷做了功。设外电路的
路端电压为U,那么正电荷由正极经外电路移送到负极的过程中,电场力所做的功为W外=qU,于是必有
量值为qU的电能转化为其他形式的能量(如
化学能、机械能等)。
在内电路中,若电源电动势为E,在电源内部依靠非静电力把
电量为q的
正电荷从负极移送到
正极的过程中,非静电力做的功为W非=qE,于是有量值为qE的其他形式的能(化学能、
机械能等)转化为
电能,同时,由于电源内部有
内电阻,电流通过内电路时,在内电阻上有内电压U',正电荷q通过内电路由负极附近移到正极附近的过程中,仍需依靠
电场力的作用克服内电阻的阻碍而做功,使电荷q的一部分
电势能转化为内能。
由于电荷q从正极出发,经过外电路和内电路回转一周,回到正极时,电势能不变,因此,根据能量转化和守恒定律,在闭合电路中,由于电场力移送电荷做功,使电能转化为其他形式的能(qU+qU'),应等于在内电路上由于非静电力移送电荷做功,使其他形式的能转化成的电势能(qε),因而qE=qU+qU',即E=U+U'。
若外电路为
纯电阻R,内电路的电阻为r,闭合电路中的电流强度为I,则U=IR,U'=Ir,代入上式即得闭合电路欧姆定律的表达式为I=E/(R+r)。
可见闭合电路欧姆定律是能的转化和守恒定律的必然结果。
形成电流的条件
在一段部分电路中形成电流的条件是电路两端存在电压,部分电路欧姆定律揭示了某部分电路中的
电流强度跟这部分电路的电压和电阻的关系。在闭合电路中形成电流的条件是电路中有电源,闭合电路欧姆定律揭示了闭合电路中的电流强度跟电源
电动势和电路总电阻的关系。闭合电路欧姆定律的适用条件跟部分电路欧姆定律一样,都是只适用于金属导电和电解液导电。
闭合电路问题
在解答闭合电路问题时,部分电路欧姆定律和
全电路欧姆定律经常交替使用。这就要求我们认清研究对象是全电路还是某一段电路,是这一段电路还是另一段电路,以便选用对应的欧姆定律,并且要注意每一组物理量(I,U,或I,E,R,r)的对应关系是对同一研究对象的,不可“张冠李戴”。