在
数学中,阿达马矩阵是一个
方阵,每个元素都是 +1 或 −1,每行都是互相正交的,常用于
纠错码,如Reed-Muller码。
|Mij| ≤1.
西尔维斯特给出的矩阵有些特殊的性质。他们都是
对称矩阵,并且这些矩阵的
迹都是0。第一行和第一列的元素都是+1,其他各行各列的元素都是一半+1,一半-1。这些矩阵和Walsh函数有密切的关系。
西尔维斯特构造法给出了阶数为1, 2, 4, 8, 16, 32 等等的阿达马矩阵,之后阿达马本人给出了阶数为12和20的阿达马矩阵。Raymond Paley随后给出了任何q+1 阶的阿达马矩阵的方法,其中q 是任何模4为3的质数任意次幂。他也给出了形式为2(q+1)的阿达马矩阵的方法,其中q 是任何模4为1的质数任意次幂。他使用了有限域的办法得出了这些结论。阿达马猜想很可能就是Paley提出的。有了更多的构造阿达马矩阵的办法。
Hadi Kharaghani 和 Behruz Tayfeh-Rezaie 2004年6月21日宣布他们构造出了428阶的阿达马矩阵。最小的尚未被构造出来的4k阶阿达马矩阵是668阶。