新奥法即新奥地利隧道施工方法的简称,原文是New Austrian Tunnelling Method 简称:NATM,新奥法概念是奥地利学者拉布西维兹(L.V.RABCEWICZ)教授于50年代提出的,它是以隧道工程经验和岩体力学的理论为基础,将锚杆和
喷射混凝土组合在一起,作为主要支护手段的一种施工方法,经过一些国家的许多实践和理论研究,于60年代取得专利权并正式命名。之后这个方法在西欧、北欧、美国和日本等许多地下工程中获得极为迅速发展,已成为现代隧道工程新技术标志之一。六十年代NATM 被介绍到我国,七十年代末八十年代初得到迅速发展。可以说在所有重点难点的地下工程中都离不开NATM,新奥法几乎成为在软弱破碎围岩地段修筑隧道的一种基本方法。
简介
新奥法是在利用
围岩本身所具有的承载效能的前提下,采用
毫秒爆破和
光面爆破技术,进行全断面开挖施工,并以形成复合式内外两层衬砌来修建隧道的洞身,即以
喷混凝土、
锚杆、
钢筋网、
钢支撑等为外层支护形式,称为初次柔性支护,系在洞身开挖之后必须立即进行的支护工作。因为蕴藏在山体中的地应力由于开挖成洞而产生再分配,隧道空间靠空洞效应而得以保持稳定,也就是说,承载地应力的主要是围岩体本身,而采用初次喷锚柔性支护的作用,是使围岩体自身的承载能力得到最大限度的发挥,第二次衬砌主要是起安全储备和装饰美化作用。
新奥法简称NATM。其特点是在开挖面附近及时施作密贴于围岩的薄层柔性
喷射混凝土和锚杆支护,以便控制围岩的变形和应力释放,从而在支护和围岩的共同变形过程中,调整围岩应力重分布而达到新的平衡,以求最大限度地保持围岩的固有强度和利用其自承能力。因此,它也是一个具体应用岩体动态性质的完整力学方法,其目的在于促使围岩能够形成圆环状承载结构,故一般应及时修筑仰拱,使断面闭合成圆环。它适用于各种不同的地质条件,在软弱围岩中更为有效。
新奥法的原理虽然可用于各种类型的支护,但是,最为适用的是
喷锚支护。因此
喷混凝土、锚杆、量测被认为是新奥法的三大要素。它产生和发展的历史与这三者密切相关,但不能把喷锚支护误解为新奥法的同义语。
发展历史
1934年,新奥法主要创始人 L.V. 拉布采维茨在就试图将喷浆方法用于地下工程。
他在1942~1945年建造的
洛伊布尔隧道中采用了双层薄衬砌,即先喷一层混凝土,待变形收敛后再喷一层。
1944年,他发表了有关喷混凝土的论文,并指出了围岩动态随时间变化的重要性。
1948年,又指出了量测工作的重要性。又公布了新喷敷方法。
1948~1953年
喷混凝土在
奥地利首次用于卡普伦
水力发电站的默尔隧洞。
最早在欧洲推广使用锚杆的是1951~1953年建造的伊泽尔-阿尔克电站的有压输水隧洞。
1953~1955年修建普鲁茨-伊姆斯特电站的有压输水隧洞时,按照拉布采维茨的建议,充分采用锚杆而获得成功。
1957~1965年是着手发展新奥法的时期。拉布采维茨于1963年将这一方法正式命名为
新奥地利隧道施工法。
1964~1969年又提出了在岩石压力下隧道稳定性的理论分析,强调采用薄层支护,并及时修筑仰拱以闭合衬砌的重要性。根据实验证实,衬砌应按剪切破坏进行设计计算。
奥地利的
马森贝格道路隧道由于地质不良,用比国法失败后,改用新奥法使闭合隧道衬砌环的经验取得成功,并在1971年及1974年分别用于地压很大的陶恩隧道和阿尔贝格隧道。
基本原理
充分利用围岩的自承能力和开挖面的空间约束作用,采用以锚杆和
喷射混凝土为主要支护手段,及时对围岩进行加固,约束围岩的松弛和变形,并通过对围岩和支护结构的监控、测量来指导地下工程的设计与施工。
施工特点
及时性
新奥法施工采用喷锚支护为主要手段,可以最大限度地紧跟开挖作业面施工,因此可以利用开挖施工面的时空效应,以限制支护前的变形发展,阻止围岩进入松动的状态,在必要的情况下可以进行超前支护,加之喷射混凝土的早强和全面粘结性因而保证了支护的及时性和有效性。
在巷道爆破后立即施工以
喷射混凝土支护能有效地制止岩层变形的发展,并控制
应力降低区的伸展而减轻支护的承载,增强了岩层的稳定性。
封闭性
由于喷锚支护能及时施工,而且是全面密粘的支护,因此能及时有效地防止因水和风化作用造成围岩的破坏和剥落,制止膨胀岩体的潮解和膨胀,保护原有岩体强度。
巷道开挖后,围岩由于爆破作用产生新的裂缝,加上原有地质构造上的裂缝,随时都有可能产生变形或塌落。当喷射混凝土支护以较高的速度射向岩面,很好的充填围岩的裂隙,节理和凹穴,大大提高了围岩的强度。(提高围岩的粘聚力C和内摩擦角)。同时喷锚支护起到了封闭围岩的作用,隔绝了水和空气同岩层的接触,使
裂隙充填物不致软化、解体而使裂隙张开,导致围岩失去稳定。
粘结性
喷锚支护同围岩能全面粘结,这种粘结作用可以产生三种作用:
① 联锁作用,即将被裂隙分割的岩块粘结在一起若围岩的某块危岩活石发生滑移坠落,则引起临近岩块的联锁反应,相继丧失稳定,从而造成较大范围的冒顶或片帮。开巷后如能及时进行喷锚支护,喷锚支护的粘结力和抗剪强度是可以抵抗围岩的局部破坏,防止个别威岩活石滑移和坠落,从而保持围岩的稳定性。
②复和作用,即围岩与支护构成一个复合体(受力体系)共同支护围岩。喷锚支护可以提高围岩的稳定性和自身的支撑能力,同时与围岩形成了一个共同工作的力学系统,具有把岩石荷载转化为岩石承载结构的作用,从根本上改变了支架消极承担的弱点。
③增加作用。开巷后及时继进行喷锚支护,一方面将围岩表面的凹凸不平处填平,消除因岩面不平引起的应力集中现象,避免过大的应力集中所造成的围岩破坏;另一方面,使巷道周边围岩由双方向受力状态,提高了围岩的粘结力C和内摩擦角,也就是提高了围岩的强度。
柔性
喷锚支护属于柔性薄性支护,能够和围岩紧粘在一起共同作用,由于喷锚支护具有一定柔性,可以和围岩共同产生变形,在围岩中形成一定范围的非弹性变形区,并能有效控制允许围岩塑性区有适度的发展,使围岩的自承能力得以充分发挥。另一方面,喷锚支护在与围岩共同变形中受到压缩,对围岩产生越来越大的支护反力,能够抑制围岩产生过大变形,防止围岩发生松动破坏。
主要原则
(1)充分保护围岩,减少对围岩的扰动。
(2)充分发挥围岩的自承能力。
(3)尽快使支护结构闭合。
(4)加强监测,根据监测数据指导施工。
可扼要地概括为“少扰动、早喷锚、快封闭、勤测量”
因为隧洞的主要承载部分是围岩,支护结构起到发挥和保护围岩承载能力的作用。在静力学理论中,隧道的结构可视为岩体承载环和支护衬砌组成的圆筒结构,承载环的闭合起到了关键作用,因此围岩和衬砌的整体化应在初期衬砌中就及早完成,保证衬砌环的稳定与完整。从应力的重分布来考虑.全断面掘进是比较理想的开挖方式。因此,施工方式归根结底要把握一个出发点,那就是保护,调动和发挥围岩的自承能力,在此基础上根据工程实际条件灵活地选择施工及辅助手段。
支护机理
其基本观点是根据岩体力学理论,着眼于洞室开挖后形成塑性区的二次应力重分布,而不拘泥于传统的荷载观念。所以它主要不是建立在对于坍落拱的“支撑概念”上,而是建立在对围岩的“加固概念”基础上。在合理的临界限度内,它所需要的表面支护抗力Pi是与围岩塑性区半径R、洞室周边位移ur、以及围岩的
内聚力с、
内摩擦角φ等参数成反比,而支护能提供的抗力则与其刚度成正比。
由于围岩应力重分布和衬砌之间相互作用而存在的四个显著的特征阶段。第Ⅰ阶段是围岩不受支护的约束而能够向洞室内自由位移的时期。第Ⅱ阶段是修筑一次支护时由于支护抗力而使变形速度减小,并且这个抗力还和支护的刚度有关。第Ⅲ阶段是由于修筑了仰拱,支护刚度变大而使变形速度越来越小。最后当仰拱完全受力,就达到第Ⅳ阶段,变形基本停止。
基本要点
可归纳为以下7点:
①洞室开挖后,应使围岩自身承担主要的支护作用,而衬砌只是对围岩进行加固,使成为一个整体而共同发生作用。因此,须最大限度地保持围岩的固有强度,以发挥围岩的自承能力。如及时
喷混凝土封闭岩壁,就能有效地防止围岩松弛,而不使其强度大幅度降低,同时也不存在因顶替支撑而使围岩变形松弛。总之应使围岩经常处于三轴应力约束状态,最为理想。
②预计围岩有较大变形和松弛时,应对开挖面施作保护层,而且应在恰当的时候敷设,过早或过迟均不利。其刚度不能太大或太小,又必须是能与围岩密贴,而要做成薄层柔性,允许有一定变形,以使围岩释放应力时起
卸载作用,尽量不使其有弯矩破坏的可能。这种支护和传统的支护不同,不是因受弯矩而是受压剪作用破坏的。由于混凝土的抗压和抗剪强度比抗拉和抗弯强度大得多,从而具有更高的承载能力。一次支护的位移收敛后,可在其光滑的表面上敷设高质量的防水层,并修筑为提高安全度的二次支护。前后两次支护与围岩之间都只有径向力作用。
③衬砌需要加强的区段,不是增大混凝土的厚度,而是加钢筋网、钢支撑和锚杆,使隧道全长范围采用大致相同的开挖断面。此外,因为新奥法不在坑道内架设杆件支撑,空间宽敞,从而提高了安全性和作业效率。
④为正确掌握和评价围岩与支护的时间特性,可在进行室内试验的同时,在现场进行量测。量测内容为衬砌内的应力、围岩与衬砌间的接触应力以及围岩的变位,据以确定围岩的稳定时间、变形速度和
围岩分类等最重要的参数,以便适应地质情况的变化,及时变更设计和施工。量测监控是新奥法的基本特征,量测的重点是围岩和支护的力学特征随时间的变化动态。衬砌的做法和施作时间是依据围岩变位量测决定的。
⑤隧道支护在力学上可看作厚壁圆筒。它是由围岩支承环和衬砌环组成的结构,且两者存在共同作用。圆筒只有在闭合后才能在力学上起圆筒作用,所以除在坚硬岩层之外,敷设仰拱使衬砌闭合是特别重要的。
围岩的动态主要取决于衬砌环的闭合时间。当上半断面超前掘进过多时,就相应地推迟了它的闭合时间,在隧道纵方向形成悬臂梁的状态而产生大弯曲的不良影响。另外,为防止引起围岩破坏的应力集中,断面应做到无
角隅,最好采用圆形断面。
⑥围岩的时间因素还受开挖和衬砌等施工方法的影响,它对结构的安全性起着决定的作用。考虑掘进循环周期、衬砌中仰拱的闭合时间、拱部导坑的长度以及衬砌强度等变化因素,把围岩和支护作为一个整体来谋求稳定。从应力重分布角度去考虑,全断面一次开挖是最有利的;分部开挖会使应力反复分布而造成围岩受损。
⑦岩层内的渗透水压力,必须采取排水措施来降低。
新奥法的支护结构仍处于经验设计的阶段,它的前提是要科学地进行围岩分类,并根据已经修建的类似工程的经验,提出支护设计参数或标准设计模式。这种
工程类比法还只考虑了岩体结构、岩块
单轴抗压强度、弱面特性等工程地质性质、坑道的跨度以及围岩自稳时间等主要因素,需在各种设计与施工规程的实施过程中,依据量测数据加以修正。现场监控设计,一般分成预先设计阶段和最后设计阶段,后者是根据现场监控量测数据,经分析比较或计算后,最后提出设计。理论解析和有限元数值计算,还不能得出充分可靠和满意的结果,必须由上述两种方法即经验和量测加以验证。
施工量测
新奥法的施工作业必须根据事前的调查决定下列 4个问题:
①开挖方法;
②支护布置及进行支护的最适宜时机;
③是否设置仰拱及设置的时间和方法;
④是否采用辅助施工方法及其种类等。
用
新奥法施工的绝大多数工程均采用各种台阶法进行开挖,其次是采用全断面法。新奥法要求保证光面爆破的质量,避免凹凸不平而引起应力集中和减少超挖,从而节约为填平表面所需的大量混凝土。
新奥法的量测十分重要。在制定现场量测计划时,要根据
隧道及地下工程的规模、地质资料、各量测项目的作用,并考虑工点所需解决的问题和量测计划的经济效益,选择合理的量测项目和方法。同时还必须考虑采用切实可靠的手段和仪表,保证量测工作准确安全,并尽可能不妨碍施工。
在应力应变、接触应力、位移等三大类量测项目中,新奥法应以位移的量测为主。通常是用收敛计量测收敛变形,用伸长计量测围岩在不同半径处的变形和获得围岩动态的范围,用水平仪量测围岩表面垂直位移和地面沉陷。此外,还可用量测锚杆测得锚杆的轴向应力,用压力盒测定接触应力,用应变计测定支撑和衬砌应力等。
实际使用
经20多年的实践和推广,新奥法已在欧洲一些国家如奥地利、
德国、
瑞典、
瑞士、法国等的山岭隧道中普遍使用(占70~80%),并已用于
地下铁道,且取得沉降量特别小的显著成果。日本从1976年以来,已有近100座隧道采用了新奥法。
中国从60年代初开始推广喷锚支护新技术,到1981年底,采用喷锚支护的地下工程和井巷的总长度已接近7500公里。2012年以来,又在
普济、下坑、
大瑶山等铁路隧道采用新奥法进行施工。
新奥法的适用性很广,中国已在亚粘土和黄土隧道施工中取得成功。但在下列情况下,一般都应采取适当的辅助措施才能施工:
①涌水量大的地层;
②因涌水产生流沙现象的地层;
③围岩破碎使锚杆钻孔和插入都极为困难场合;
④开挖面不能自稳的围岩。
展望
新奥法的发展是和喷锚支护的材料、方法和机具等的发展密切相关的。要进一步研制初期和
长期强度都高、回弹少、粉尘低、生产率高的
喷射混凝土系统,并和高效能的
集尘器、自动喷射装置、周期短的材料供应系统配套。研究能缩短喷敷时间,又无公害的新喷敷方法。研究不需用临时堆放场地、易于运输的喷射材料和新的施工工艺,如钢纤维加强喷射混凝土、
SEC喷射混凝土、光面爆破和深孔爆破技术、液压
凿岩台车(兼作安装锚杆用)、喷射车组(包括
机械手)、各种
混凝土喷射机、
液体速凝剂、粉尘防止剂、树脂锚杆等。