面内云纹法
纹法的一种
实验应力分析方法,属云纹法的一种,用于测量试件表面的试件平面内的位移分量。
基本原理
把栅片牢固地粘贴在试件(模型或构件)表面,当试件受力而变形时,栅片也随之变形。将不变形的栅板叠加在栅片上,栅板和栅片上的栅线便因几何干涉而产生条纹(图1),即云纹(又称叠栅条纹)。云纹法就是测定这类云纹并对其进行分析,从而确定试件的位移场或应变场。
基本方法
用面内云纹法测量试件变形,需要两块栅:一块是将栅线印制在试件的表面,随试件一起变形的试件栅;另一块是不随试件变形的参考栅(或称分析栅)。将这两块栅互相接触重叠,就会因干涉而形成云纹。如进行非接触式测试,须通过透镜。使一块栅成像于另一块栅的平面上,形成干渉条纹。
理论计算
图2所示参考栅的节距为p,和它等节的试件栅,在试件受载前,位置和参考栅重合,在试件受载后,有任意的二维变形,即各点有不均等的栅线转角及节距变化。如图可见,任一亮条纹所经过的各栅线交点处,其栅线序数的差值为常数,与(1)符合。还可看出,在N=0,1,2,…诸条纹上的试件栅各点,分别有沿参考栅主方向(与栅线方向垂直)的位移0,1p,2p。沿参考栅的主方向取为x轴,并以u表示x方向的位移,则
u=Np, N=0,1,2,...(2)
随着两组平行栅之间的栅线夹角逐渐增大,所形成的干涉条纹会不断增密。栅线夹角大于30°,条纹因过密而变成灰色背景,目力已难以分辨。利用这种现象,通常可采用由两组互相正交的平行栅线构成的正交栅作为试件栅,参考栅则可用平行栅。当它转至某适当位置时,只能和试件栅的某一组栅线形成易辨认的干涉条纹。再将参考栅转动90°,则可与试件栅的另一组栅线形成清晰的干涉条纹。设试件栅为正交栅,其中一组栅线在变形前平行于x轴,变形后与主方向沿y轴的参考栅相干涉,以N′表示条纹级数,则可得出y方向的位移v为:
v=N′p,N′=0,1,2,… (3)
上面得到的两幅云纹图,分别表示沿参考栅主方向的位移场,即u位移场和v位移场。每一条纹表示沿参考栅主方向的等位移线。相邻的条纹,其位移相差一个节距。
由(2)和(3)求偏导数,可得:
,,,(4)
小变形时的应变分量为:
由(4)和(5)得:
大应变时的各应变式,还须包括(4)中偏导数的高次项。
根据上面的应变式,试件各点应变的大小也可用作图法求出。图3a的云纹图表示位移场u。计算图上A点应变状态的步骤如下:
通过A点作平行于x轴和y轴的直线,根据其和各条纹相交的位置和相应的条纹级数,分别绘出位移曲线(图3b和3c)。测出这两条曲线上对应于A点的切线倾角θ和θ’,其正切就分别等于和。按照同样的步骤,从表示位移场v的云纹图可得出和。将这些偏导数值代入(6),就可算出A点的应变状态。由于条纹级数的递增或递减将确定位移曲线斜率的正负,亦即将确定应变的正负(表示伸长或缩短),因此为了确定应变的符号,在上述步骤中还须另加确定条纹级数的方法。
应用注意事项
上面所说的是采用等节的参考栅和试件栅的云纹法。这种方法在栅线密度为每毫米数十条线的通常情况下,只适用于测量塑性变形或较大的弹性变形。
如要测量较小的应变,又要条纹不致过稀,以免影响位移(对x或y)的准确求导,则须采用高密度的栅线。或利用准直相干光通过栅线时所产生的衍射效应,可使低密度的栅线倍增为高密度的栅线。
发展趋势
云纹法的主要发展趋向是:运用不同的光学手段和信息处理技术,提高应变测量的灵敏度和准确度;实现位移数据的采集和处理,以及算出应变值等过程的自动化和计算机化。在测量中,趋向于综合运用云纹法和其他实验应力分析方法,以便兼取各法的优点,例如云纹法和光弹性贴片法的结合,和散斑法的结合等。此外云纹法和全息照相的结合,则已发展成一种新的实验应力分析方法——全息云纹法。
参考资料
最新修订时间:2024-11-25 17:37
目录
概述
基本原理
基本方法
理论计算
参考资料