颜色空间也称彩色模型(又称彩色空间或彩色系统)它的用途是在某些标准下用通常可接受的方式对彩色加以说明。
简介
本质上,彩色模型是
坐标系统和子空间的阐述。位于系统的每种颜色都有单个点表示。采用的大多数
颜色模型都是面向硬件或面向应用的。颜色空间从提出到现在已经有上百种,大部分只是局部的改变或专用于某一领域。科学研究中有不少逻辑性等方面比HSХ更高的颜色空间。
颜色空间有许多种,常用有RGB,CMY,HSV,HSI等。
RGB(红绿蓝)是依据人眼识别的颜色定义出的空间,可表示大部分颜色。但在科学研究一般不采用RGB颜色空间,因为它的细节难以进行数字化的调整。它将色调,亮度,饱和度三个量放在一起表示,很难分开。它是最通用的面向硬件的彩色模型。该模型用于彩色监视器和一大类彩色视频摄像。
CMY是工业印刷采用的颜色空间。它与RGB对应。简单的类比RGB来源于是物体发光,而CMY是依据
反射光得到的。具体应用如打印机:一般采用四色墨盒,即CMY加黑色墨盒。
HSV,HSI两个颜色空间都是为了更好的数字化处理颜色而提出来的。有许多种HSX颜色空间,其中的X可能是V,也可能是I,依据具体使用而X含义不同。H是色调,S是饱和度,I是强度。
L*a*b颜色空间用于计算机色调调整和彩色校正。它独立于设备的彩色模型实现。这一方法用来把设备映射到模型及模型本社的彩色分布质量变化。
等能量的红、绿、蓝三原色分别作为X、Y、Z轴构成颜色空间
分类
RGB
RGB是通过红绿蓝三原色来描述颜色的颜色空间,R=Red、G=Green、B=Blue。
RGB颜色空间以R(Red红)、G(Green绿)、B(Blue蓝)三种基本色为基础,进行不同程度的叠加,产生丰富而广泛的颜色,所以俗称三基色模式。在大自然中有无穷多种不同的颜色,而人眼只能分辨有限种不同的颜色,RGB模式可表示一千六百多万种不同的颜色,在人眼看来它非常接近大自然的颜色,故又称为自然色彩模式。红绿蓝代表可见光谱中的三种基本颜色或称为三原色,每一种颜色按其亮度的不同分为256个等级。当
色光三原色重叠时,由于不同的混色比例能产生各种中间色,例如,三原色相加可产生白色。所以RGB模式是加色过程。屏幕显示的基础是RGB模式,彩色印刷品却无法用RGB模式来产生各种彩色,所以,RGB模式常用于视频、多媒体与网页设计。
YIQ
YIQ色彩空间属于NTSC系统。这里Y是指颜色的明视度,即亮度。其实Y就是图像灰度值,I和Q都指的是指色调,即描述图像色彩与饱和度的属性。YIQ颜色空间具有能将图像中的亮度分量分离提取出来的优点,并且YIQ颜色空间与RGB颜色空间之间是线性变换的关系,计算量小,聚类特性也比较好,可以适应光照强度不断变化的场合,因此能够有效地用于彩色图像处理。
优缺点
RGB颜色空间是图像处理中最基本、最常用、面向硬件的颜色空间。我们采集到的彩色图像,一般就是被分成R、G、B的成分加以保存的。然而,自然环境下获取的果实图像容易受自然光照、叶片遮挡和阴影等情况的影响,即对亮度比较敏感。而RGB颜色空间的分量与亮度密切相关,即只要亮度改变,3个分量都会随之相应地改变。所以,RGB颜色空间适合于显示系统,却并不适合于图像处理。另一方面,HSI变换与RGB变换都是非线性变换,耗时多,无法满足机器手进行采摘工作的实时性需要。L*a*b*颜色空间可以直接通过使用颜色空间内的几何距离来做不同颜色之间的比较分析,所以可以有效地、方便地用在测量较小的色差上。可是尽管非线性变换空间可以消除其各个颜色分量之间存在的相关性,可用于数字图像处理,但因为是非线性变换,所以计算量比较大,并且颜色空间同样存在奇异点的问题。
其它相关
颜色空间
YUV是通过亮度-色差来描述颜色的颜色空间。
亮度信号经常被称作Y,色度信号是由两个互相独立的信号组成。视
颜色系统和格式不同,两种色度信号经常被称作UV或PbPr或CbCr。这些都是由不同的编码格式所产生的,但是实际上,他们的概念基本相同。在DVD中,色度信号被存储成Cb和Cr(C代表颜色,b代表蓝色,r代表红色)。
分配比例
在十年中,视频工程师发现人眼对
色度的敏感程度要低于对亮度的敏感程度。在生理学中,有一条规律,那就是人类视网膜上的视网膜杆细胞要多于视网膜锥细胞,说得通俗一些,视网膜杆细胞的作用就是识别亮度,而视网膜锥细胞的作用就是识别色度。所以,你的眼睛对于亮和暗的分辨要比对颜色的分辨精细一些。正是因为这个,在我们的视频存储中,没有必要存储全部颜色信号。既然眼睛看不见,那为什么要浪费存储空间(或者说是金钱)来存储它们呢?
像Beta或VHS之类的消费用录像带就得益于将录像带上的更多带宽留给黑—白信号(被称作“亮度”),将稍少的带宽留给彩色信号(被称作“色度”)。
在MPEG2(也就是DVD使用的压缩格式)当中,Y、Cb、Cr信号是分开储存的(这就是为什么分量视频传输需要三条电缆)。其中Y信号是黑白信号,是以
全分辨率存储的。但是,由于人眼对于彩色信息的敏感度较低,色度信号并不是用全分辨率存储的。
YUV 4:4:4
色度信号分辨率最高的格式是4:4:4,也就是说,每4点Y采样,就有相对应的4点Cb和4点Cr。这种格式主要应用在视频处理设备内部,避免画面质量在处理过程中降低。当图像被存储到Master Tape,比如D1或者D5,的时候,颜色信号通常被削减为4:2:2。
YUV 4:2:2
其次就是4:2:2,每4点Y采样,就有2点Cb和2点Cr。在这里,每个象素都有与之对应的亮度采样,同时一半的色度采样被丢弃,所以我们看到,色度采样信号每隔一个采样点才有一个。就像上面提到的那样,人眼对
色度的敏感程度不如亮度,大多数人并不能分辨出4:2:2和4:4:4颜色构成的画面之间的不同。
YUV 4:2:0
概念上4:2:0颜色格式非交错画面中亮度、色度采样信号的排列情况。同4:2:2格式一样,每条扫描线中,只有一半的色度采样信息。同时,YUV 4:2:0是所有采样方式中颜色分辨率最低的一种。
请注意,在4:2:0颜色格式中,色度采样被放在了两条扫描线中间。为什么会这样呢?很简单:DVD盘上的颜色采样是由其上下两条扫描线的颜色信息“平均”而来的。比如,图三中,第一行颜色采样(Line 1和Line 2中间夹着的那行)是由Line 1和Line 2“平均”得到的,第二行颜色采样(Line 3和Line 4中间夹着的那行)也是同样的道理,是由Line 3和Line 4得到的。
虽然文章中多次提到“平均”这个概念,但是这个“平均”可不是我们通常意义上的(a+B)/2的平均。颜色的处理有极其复杂的算法保证其最大限度地减少失真,接近原始质量。
事实上4:2:0是一个混乱的称呼,按照字面上理解,4:2:0应该是每4点Y采样,就有2点Cb和0点Cr,但事实上完全不是这样。举个例子,如果整张画面的尺寸是720*480,那么亮度信号是720*480,色度信号只有360*240。诚然,4:4:4的效果很棒,但是如果要用4:4:4存储一部电影,我们的DVD盘的直径至少要有两英尺(六十多厘米)!
包装格式
在个人计算机上,这些YUV读出来以后会以一些格式包装起来,送给软件或硬件处理。包装的方式分成两种,一种是Packed format,把Y和相对应的UV包在一起。另一种是Planar format,把Y和U和V三种分别包装,拆成三个plane(平面)。
其中YV12和YUY2都是一种YUV的包装格式,YV12是Planar format,YUY2则是Packed format。
YV12和YUY2的不同,在于YV12是YUV 4:2:0格式,也就是DVD/VCD上原本储存的格式。YUY2则是YUV 4:2:2格式。