主要指确定飞行器(整体或部件)的颤振临界速度的试验。此外还有其它工程结构(如钢结构悬桥)的颤振试验。
简介
当飞行达到一定速度时,由于空气动力和结构弹性振动的相互影响,飞行器会发生一种称之为颤振的自激振动,这时的速度叫颤振临界速度(参见颤振)。大多数颤振会造成灾难性后果。例如飞机的机翼和尾翼在以秒计的短时间内发生破坏。在第一次世界大战初期,Handley Page轰炸机曾由于尾翼颤振而使机身和尾翼发生激烈振动。1917年,DH-9飞机也因尾翼颤振而坠毁。这些颤振事件促使航空工程界首先开展颤振的理论和试验研究,并把这项工作列为飞行器设计工作中的一个重要环节。颇振试验基本上可以分为模型试验和飞行试验两大类。
模型试验
这类试验可用缩尺模型在风洞中进行。供试验用的模型应该满足空气动力学、结构动力学和几何形状等方面相似律的要求,这些要求内容广泛,以致颤振模型很难全部满足。解决办法通常是根据具体情况忽略某些次要因素。在风洞中进行试验的一般作法是逐步提高气流速度,当模型的振动由衰减转变为扩散时,气流速度就等于颤振临界速度。在设计工作中,为了研究机翼上外挂物(如发动机、油箱,武器等)对颤振速度的影响,可采用风洞模型颤振试验,它能方便地确定外挂物的最佳位置。除风洞试验外,也可利用受控飞行的火箭或在专门设计的轨道上滑行的火箭橇进行模型颤振试验。对于高速飞行,这类方法相当重要,它可以避免风洞的洞壁干扰,使模型经受的气流环境和实物相同。
飞行试验
即用真实飞行器进行的飞行颤振试验,由于它能反映真实情况而受到重视。试验方法一般是逐步提高飞行速度,并记录在每一飞行速度下飞行器结构对外加激励的振动响应,然后导出振动衰减率和飞行速度的关系曲线,最后利用外推法得到振动衰减率为零值时的颤振临界速度。但是这类试验的危险性较大。
此外,还有工程结构(如钢结构悬桥等)的颤振试验。