香农公式,通信工程学术语,是香农(Shannon)提出并严格证明的“在被
高斯白噪声干扰的信道中,计算最大信息传送速率C公式”:C=B log2(1+S/N)。式中:B是
信道带宽(
赫兹),S是信道内所传信号的
平均功率(瓦),N是信道内部的高斯噪声功率(瓦)。
香农公式简介
香农定理指出,如果
信息源的信息速率R小于或者等于
信道容量C,那么,在理论上存在一种方法可使信息源的输出能够以任意小的差错概率通过信道传输。
该定理还指出:如果R>C,则没有任何办法传递这样的信息,或者说传递这样的
二进制信息的
差错率为1/2。
可以严格地证明;在被
高斯白噪声干扰的信道中,传送的最大信息速率C由下述公式确定:
该式通常称为香农公式。C是数据速率的
极限值,单位bit/s;W为
信道带宽,单位Hz;S是信号功率(瓦),N是
噪声功率(瓦)。
香农公式中的S/N是为信号与噪声的功率之比,为
无量纲单位。如:S/N=1000(即,信号功率是噪声功率的1000倍)
但是,当讨论信噪比时,常以
分贝(dB)为单位。公式如下:
换算一下:
公式表明,信道带宽限制了
比特率的增加,信道容量还取决于系统信噪比以及编码技术种类。
公式验证
联想到所熟悉的
通信技术,很容易对香农公式进行定性地验证,首先来看看因特网的接入方式。最早使用的
拨号上网方式都离不开
调制解调器,这是一种在模拟链路(音频
电话线)上传输数据的设备,并且没有太高的错误率。但细心的人一定会发现调制解调器的标称速度为56kbps了,但实际
网络传输的速度都远低于56kbps。究其原因就会发现瓶颈在电话线上。
通常音频电话连接支持的带宽W=3kHz,而一般链路典型的
信噪比是30dB,即
S/N=1000,因此有C=3000×log2(1+1000),近似等于30kbps,因此如果
电话网的信噪比没有改善或不使用压缩方法,“猫”将达不到更高的速率。
综合业务数字网(ISDN)出现后,
用户线的
数字化技术有了巨大发展:取消了
音频带宽3 kHz的限制,使
双绞线带宽得到充分利用,传输数据速率达到144 kbps(2B+D)。
但ISDN的速率对
宽带业务而言还远远不够,更高速度的
数字用户环路技术应运而生,其中使用较多的就是
ADSL(非对称数字用户线环路)。ADSL采用
频分复用技术,在保留了传统电话带宽(0~4kHz)的同时,另外开辟了10~130 kHz和130~1100 kHz两个
频带分别用于上下行
数据传输,此外ADSL还采用了全新的
数字调制解调技术,传输带宽的扩展和
调制技术的革命,使其上行可达1Mb/s速率,
下行速率更可高达8Mb/s。
虽然香农公式源于对
数字通信的研究,但其分析方法对
模拟通信一样适用。
例如:中波
调幅广播不论是在音质上,还是在
抗干扰性、抗衰落性等方面都远不及
调频广播,原因在于两者所传输得信号本身是一样的(可以理解为
信源信息速率C一样),但调频广播所占用的
信号带宽却
远大于调幅广播(即BFM>>BAM)因此调频广播信噪比要明显优于调幅广播。同样的,
单边带调幅和
双边带调幅之间的差异也可以用这一方法来分析理解。
扩频通信
从香农公式中还可以推论出:在信息最大速率C不变的情况下,带宽W和信噪比
S/N是可以互换的,也就是说,从理论上完全有可能在恶劣环境(噪声和干扰导致极低的信噪比)时,采用提高
信号带宽(W)的方法来维持或提高通信的性能,甚至于可以使信号的功率低于
噪声基底。简言之,就是可以用扩频方法以
宽带传输信息来换取信噪比上的好处,这就是
扩频通信的基本思想和理论依据。
扩频通信(Spread Spectrum Communication)技术起源于上世纪中期。但在当时,该技术并没有得到关注,直到进入80年代后才开始受到重视,并逐步实用化,
扩频通信技术是现代短距离
数字通信(如
卫星定位系统(
GPS)、3G
移动通信系统、
无线局域网802.11a/b/g和
蓝牙)中采用的
关键技术。
扩频通信的基本特征就是扩
展频谱,具体做法是使用比发送的信息
数据速率高许多倍的
伪随机码把载有信息数据的
基带信号的频谱进行扩展,形成宽带的低
功率谱密度的信号来通信。
扩频技术的精确定义是:通过注入一个更高频率的信号将基带信号扩展到一个更宽的
频带内的射频
通信系统,即
发射信号的能量被扩展到一个更宽的频带内使其看起来如同噪声一样。扩展带宽与初始信号之比称为扩频
处理增益(dB),
典型值可以从10dB到60dB。
发射端,在天线之前某处链路注入
扩频码,这个过程称为
扩频处理,经扩频处理后原数据信息能量被扩散到一个很宽的频带内。在接收端相应链路中移去扩频码,恢复数据,此过程称为解扩。显然,收发两端需要预先知道扩频码。
频谱特性
或许有人会觉得:扩频占用了更宽的频带,浪费了宝贵的无线电
频率资源。这种观点看似有理,其实不对。因为在扩频通信中可以通过
多用户共享同一扩大了的频带得到频率资源上的补偿。
三大抗性
经过扩频处理,信道上传输的数据信息与
扩频因子是相关的,而干扰和阻塞信号与扩频因子无关,所以接收端经解扩处理后就只剩下有用的信息,而干扰和阻塞信号很容易就被抑制掉了,这种抑制能力同样也作用于其它不具有正确扩频因子的
扩频信号,如没有授权的用户因不知道原始信号的扩频因子而无法解码,或者说扩频通信允许不同用户共享同一频带(如
CDMA)。因此,采用扩频技术不仅可以获得较高的抗干扰、抗阻塞特性和交叉抑制特性,而且可以实现复用。
扩频通信中,
信号电平可以低于噪声基底,这样以来,信息能量隐藏于噪声之中,这是直序扩频的显著特点。从频谱上观察,充其量只是检测到
噪声电平有一点提高而已,因此扩频通信具有很好的保密性。
无线信道通常具有
多径传播效应,从发射端到接收端存在不止一条路径。反射路径(R)对直通路径(D)产生干扰被称为衰落。因为解扩过程与直通路径信号D同步,所以,即使反射路径信号R包含有相同的扩频因子,也同样会被抑制掉。
调制方式
如果在数据上直接注入
扩频码,则可得到直序扩频(DSSS),在实际应用中,扩频码与
通信信号相乘,产生完全被
伪随机码“打乱”了的数据。在这种技术中,伪随机码直接加入载波
调制器的数据上。调制器具有更大的
比特率。用这样一个码序列调制射频载波的结果是产生一个中心在
载波频率、频谱为((sinx)/x)2的直序调制扩
展频谱。
如果扩频码作用在载波频率上,我们就得到
跳频扩频(FHSS)。FHSS伪随机码使载波按照
伪随机序列改变或跳变。顾名思义,FHSS中载波在一个很宽的频带上按照伪随机码的定义从一个
频率跳变到另一个频率。
如果用扩频码控制
发射信号的开或关,则可得到时间跳变的扩频技术(THSS)。时跳变扩频技术利用伪随机序列控制功放的通/断,该项技术应用不多。
这几种扩频技术并不互相排斥,可以综合在一起形成混合扩频技术,如DSSS+FHSS。
相关人物
克劳德·艾尔伍德·香农(Claude Elwood Shannon), 1916年4月30日出生于美国
密歇根州,1936年毕业于
密歇根大学并获得数学和
电子工程学士学位,1940年获得
麻省理工学院(MIT)数学博士学位和电子工程硕士学位。1941年他加入
贝尔实验室数学部,并一直工作到1972年。在此期间,1956年他成为麻省理工学院(MIT)客座教授,并于1958年成为终生教授。香农于2001年2月24日去世。据传,香农与大发明家爱迪生有远亲关系。香农的大部分时间是在贝尔实验室和MIT(麻省理工学院)度过的。1948年至1949年间,他先后发表了《通讯的数学原理》和《噪声下的通信》,文章阐明了通信的基本问题,给出了
通信系统的模型,提出了
信息量的数学
表达式,并解决了
信道容量、
信源统计特性、
信源编码、
信道编码等一系列
基本技术问题。这两篇论文被视为
信息论奠基之作。香农也因此一鸣惊人,被誉为“信息论之父”。