2.如果位错误的概率是可以接受的,则可以实现高达R()的速率,其中
和是二进制熵函数
对于任何,大于R()的速率是不可实现的。
(MacKay(2003),第162页; cf Gallager(1968),ch.5; Cover和Thomas(1991),第198页; Shannon(1948)11页)
香农哈特利定律
在信息论中,香农极限告诉在该信息可以通过一个特定带宽的存在特定噪声的通信信道数据被发送的最大速率。这是噪声信道编码定理在受到高斯噪声的连续时间、模拟通信信道的原型情况下的应用。该定理建立了对这种通信链路的信道香农限,限制了在存在噪声干扰的情况下可以以指定带宽发送的每个时间单位的无错误信息的最大量,假设信号功率是有界的,并且高斯噪声过程的特征在于已知功率或
功率谱密度。定理以Claude Shannon和Ralph Hartley命名。
香农 -
哈特利定理陈述了通道容量C,这意味着可以使用平均接收信号功率S通过经过加性白高斯的模拟通信通道以任意低的错误率传送的数据的信息速率的理论上的最上限电源噪声N:
奈奎斯特率
在1927年,奈奎斯特认为每单位时间可以通过电报通道的独立脉冲数量被限制在通道带宽的两倍。在符号中,
其中是脉冲频率(以每秒脉冲数计),B是带宽(赫兹)。数量2B后来被称为奈奎斯特速率,并以每秒2个B脉冲的限制脉冲速率以奈奎斯特率发送信号。奈奎斯特在1928年发表他的研究成果,作为他的论文“电讯传播理论中的某些话题”的一部分。
哈特利定律
1928年,哈特利制定了一种量化信息和线路速率(也称为数据信令速率 R比特每秒)的方法。这种方法,后来被称为哈特利定律,成为香农更加复杂的通道容量概念的重要前身。
哈特利认为,可以通过通信信道可靠地发送和接收的可区分脉冲电平的最大数量受到信号幅度的动态范围和接收机能够区分振幅电平的精度的限制。具体地说,如果发送信号的幅度被限制在[ - A ... + A ]伏的范围内,并且接收机的精度为± ΔV伏特,则不同脉冲M的最大数量由
通过以比特/脉冲中的每个脉冲获取信息作为可以发送的不同消息M的数量的基2-对数,Hartley构建了线速率R的度量:,
其中是脉冲速率,也称为符号速率,以符号/秒或波特率表示。
然后,哈特利将上述量化与奈奎斯特的观察结合起来,可以通过带宽B 赫兹通道的独立脉冲数为每秒2B脉冲,以达到其可实现线速率的定量测量。
哈特利定律有时引述只是模拟带宽,B,以Hz为单位,和今天被称为数字带宽的R ,以比特/秒为单位之间的比例。其他时候,以这种更定量的形式引用,作为每秒可用的R比特率:
哈特利没有确切地知道数字M应如何依赖于信道的噪声统计,或者即使单个符号脉冲不能可靠地区分为M个等级,通信如何可靠地生成; 利用高斯噪声统计,系统设计人员必须选择非常保守的M值来实现低错误率。
哈特利的速率结果可以被看作是一个无差错的能力中号的2个进制信道B每秒符号。有些作者将其称为容量。但是这样一个无误的信道是一个理想化的方式,如果选择M小到足以使噪声信道几乎无误,结果必然小于带宽B的噪声信道的香农容量,这是随后的香农哈特利定律结果后来。
哈特利定律与香农限的关系
将信道容量与哈特利定律的信息比率进行比较,我们可以找到有效数量的可区分级别M:
平方根有效地将功率比转换回电压比,因此电平数量几乎与信号RMS幅度与噪声标准偏差之比成正比。 香农限与哈特利定律之间形式的相似性不应该被解释为意味着M脉冲水平可以毫无混乱地被发送; 需要更多的级别,以允许冗余编码和纠错,但是可以用编码处理的净数据速率等同于使用哈特利定律中的M。
可替代形式
频率依赖(彩色噪声)情况
在上面的简单版本中,信号和噪声完全不相关,在这种情况下,S + N是接收信号和噪声的总功率。通过对多个窄独立的高斯信道并行处理信道,获得加性噪声不是白色(或S / N在带宽上的频率不恒定)的情况下的上述等式的推广,
C是以比特/秒为单位的信道容量 ;
B是信道的带宽,单位为Hz;
S(f)是信号功率谱
N(f)是噪声功率谱
f是以Hz为单位的频率。
注意:该定理仅适用于高斯稳定过程噪声。该公式引入频率相关噪声的方法不能描述所有的连续时间噪声过程。例如,考虑噪声过程,其包括在任何时间点加上振幅为1或-1的随机波,以及将这样的波加到源信号上的信道。这样的波的频率分量是高度依赖的。虽然这样的噪声可能具有高功率,但是如果底层噪声是每个频带中的独立噪声之和,则传输比所需要的功率少得多的连续信号是相当容易的。
近似
对于大或小且恒定的信噪比,容量公式(香农公式)可以近似为:
这里
2. 同理,如果S / N <<1,那么
在这种低SNR近似中,如果噪声为白色,则光谱密度的容量与带宽无关瓦特/赫兹,在这种情况下,总 噪声功率是。
非静止记忆信道的信道容量
假设通道是无记忆的,但是其转换概率随时间而变化,以发射机和接收机已知的方式。然后通道容量由
在每个相应通道的容量达到分配的情况下达到最大值。也就是,
这里代表第i个信道的容量。
各种编码对于接近香农限的程度
诸如“发送消息3次并且如果副本不同则使用最佳2投票方案”这样的简单方案是无效率的纠错方法,不能够渐近地保证一个数据块可以毫无差错地传达。诸如Reed-Solomon码的高级技术,以及最近的低密度奇偶校验(LDPC)码和turbo码更接近于达到理论香农限制,但是以高的计算复杂度为代价。使用这些高效率的代码和当今
数字信号处理器的计算能力,现在可以达到非常接近香农限额。实际上,已经表明,LDPC码可以达到香农极限的0.0045dB(对于二进制AWGN信道,具有非常长的块长度)。
土耳其毕尔肯大学教授Erdal Arikan于2009年正式提出的新型编码方案——
极化码(polar code),是目前唯一一个在理论上已经被证明可以到达香农限的方案。