马峰,男,1978年5月生,安徽宿州人,
长安大学公路学院教授、博士生导师。美国
弗吉尼亚理工大学(Virginia Polytechnic Institute and State University)博士后(访问学者),美国
密苏里科技大学(Missouri University of Science and Technology)访问学者。
人物经历
长安大学公路与城市道路工程专业学士学位,长安大学道路与铁道工程专业硕士、博士学位。
2007年2024年,长安大学公路学院从事道路工程专业的教学、科研工作。
2011年8月至2012年8月,美国
弗吉尼亚理工大学,博士后(访问学者)。
2018年10月至2019年10月,美国
密苏里科技大学,访问学者。
研究领域
沥青及沥青混合料改性技术、交通能源自洽技术、环保与功能型道路建设技术 、路面结构与材料性能及测试、公路工程环境评价与节能减排等。
学术成果
科研项目
主持国家重点研发项目课题、交通运输部科技示范项目等,主持完成2项国家自然科学基金项目,陕西省科技项目,陕西省外专局项目,河南交通运输厅科技项目;作为主要研究人员参与了国家自然科学基金重点项目、国家科技支撑计划项目、科技部国际合作项目,西部交通建设项目等课题。
1.国家重点研发项目 课题一“智能网联道路几何、结构、自洽能源设施一体化设计方法”;
2.国家自然科学基金 “基于现代物相技术的沥青微观组成与结构研究”;
3.国家自然科学基金 “天然沥青改性沥青的微观组成与粘弹性能研究”;
4.科技部国际合作项目 “沥青路面全寿命周期能耗评价技术合作研究”;
5.交通运输部科技示范项目“四川高原高速公路高质量建造技术”课题三“功能型路面建造关键技术”;
6.山东交通科技项目 “基于相变技术的自主调温融冰雪沥青路面研究”;
7.新疆交通科技项目 “新疆地区沥青路面盐蚀损害影响研究”;
8.张家口科技项目 “温拌改性沥青路面的节能减排特性及铺筑技术研究”;
9.陕西省科技项目,陕西省外专局项目、河南交通运输厅科技项目等;
10.国家自然科学基金重点项目“环保型路面全寿命周期设计理论与方法”;
11.国家重点研发项目“与智能感知相融合的高性能道路材料设计方法”;
12. “十一五”国家科技支撑计划项目“环保型道路建设与维护技术”;
13.西部交通建设项目“沥青路面施工质量过程控制”;
14.中国公路学会技术标准;
15.中石化项目“塔河沥青路用性能评价与生产应用技术研究和推广”;
16.河南交通科技项目“高模量沥青混凝土路面性能研究”等课题。
学术论文
在国内外期刊发表论文近100篇,近5年主要英文论文为:
[1]Dai J S, Ma F*,Ceasare,S,et al. Assessment of high-enthalpy composite eutectic phase change materials efficiency in asphalt binders for cooling pavements[J]. Journal of Cleaner Production 2024; 442:140999. SCI IF= 11.1, 中科院分区, 一区,TOP
[2]Hou Y J ,Ma F*, Fu Z,et al.Low-temperrature aliphatic eutectic phase change materials for asphalt:Design and characterization[J]. Construction and Building Materials 2024; 414:134852. SCI IF= 7.4, 中科院分区, 一区,TOP
[3]Shi K, Ma F*Fu Z*,et al.Enhancing aged SBS-modified bitumen performance with unaged bitumen additives[J]. Construction and Building Materials 2024; 412:134768. SCI IF= 7.4, 中科院分区, 一区,TOP
[4]Wen Y L ,Ma F*,Fu Z*,et al. Evaluation on the fatigue and self-healing properties of aged and rejuvenated SBS-modified asphalt.[J]. Construction and Building Materials 2024; 412:134733. SCI IF= 7.4, 中科院分区, 一区,TOP
[5]Tang Y J, Fu Z, Ma F,et al.Damage on asphalt surfaces caused by ionic solution erosion and salt crystallization at molecular scale[J]. Applied Surface Science.2024; 643:158718. SCI IF= 6.7, 中科院分区, 一区,TOP
[6]Tang Y J, Fu Z, Raos G,Ma F,et al.Molecular dynamics simulation of adhesion at the asphalt-aggregate inter face: A review[J].Surfaces and interfaces. 2024,44:103706. SCI IF= 6.2, 中科院分区, 二区
[7]Shi K, Ma F*,Liu J,et al.Rejuvenation effect of aged SBS-modified asphalt utilizing molecule analysis[J].Journal of Cleaner Production 2023; 405:136964. SCI IF= 11.071, 中科院分区, 一区,TOP
[8]Dai J S, Ma F*,,Fu Z*,et al. Effectiveness of the different eutectic phase-change materials in cooling asphalt pavement[J]. Construction and Building Materials 2023; 407:1343491. SCI IF= 7.693, 中科院分区, 一区,TOP
[9]Wen Y L ,Ma F*,Fu Z*,et al.. Evaluation of the microcapsules on the rheological and self-healing performance of asphalt[J]. Construction and Building Materials 2023; 409:133982. SCI IF= 7.693, 中科院分区, 一区,TOP
[10]Ma F*,Zhu C X ,Fu Z*,et al Analysis of rheological behavior and anti-aging properties of SBS modified asphalt incorporating UV absorbent and naphthenic oil (NPO)[J]. Construction and Building Materials 2023; 377:130958. SCI IF= 7.693, 中科院分区, 一区,TOP
[11] Ma F*,Hou Y J , Fu Z,et al. Microencapsulated binary eutectic phase change materials with high energy storage capabilities for asphalt binders[J]. Construction and Building Materials 2023; 392:131814. SCI IF= 7.693, 中科院分区, 一区,TOP
[12]Li C, Qin W, Fu Z,Dai J S, Ma F*, Comparative evaluation on decay process of asphalt-aggregate interfaces under solution erosion[J]. Construction and Building Materials 2023; 400:12698. SCI IF= 7.693, 中科院分区, 一区,TOP
[13]Hou Y J ,Ma F*, Fu Z,et al.Encapsulation of stearic-palmitic acid in alkali-activated coconut shell and corn cob biochar to optimize energy storage [J]. Journal of energy storage 2023; 66:107418. SCI IF= 9.4, 中科院分区, 二 区,TOP
[14]Tang Y J, Fu Z, Ma F,et al.Effect of water molecular behavior on adhesion properties of asphalt-aggregate interface[J]. Construction and Building Materials 2023; 402:13028. SCI IF= 7.693, 中科院分区, 一区,TOP
[15]Tang Y J, Fu Z, Liu J ,Ma F,et al. Molecular dynamics simulation and experimental analysis on fluidity improvement of liquid rubber modified asphalt binder[J]. Construction and Building Materials 2023; 402:13027. SCI IF= 7.693, 中科院分区, 一区,TOP
[16]Fu Z,Tang Y J,Peng C,,Ma F,et al. Properties of polymer modified asphalt by polyphosphoric acid through molecular dynamics simulation and experimental analysis[J].Jounal of molecular liquids.2023,382:121999.SCI IF= 6.0, 中科院分区, 二 区,TOP
[17]Wen Y L ,Ma F*,Fu Z*,et al. Evaluating the low-temperature creep properties of polyphosphoric acid-polymer composite[1]modified asphalt[J].International Journal of Pavement Engineering.2023,24:2211210.SCI IF= 3.8 中科院分区, 三 区
[18] Tang Y J, Fu Z, Ma F,et al.Carbon nanotubes for improving rheological and chemical properties of styrene–butadiene–styrene modified asphalt binder[J].International Journal of Pavement Engineering.2023,24:2211212.SCI IF= 3.8 中科院分区, 三 区
[19] Shi K, Fu Z,Song R M, Liu J,Ma F, et al.Multiscale investigation of waste soybean oil rejuvenated asphalt binder utilising experimental methodologies and molecular dynamics simulations[J].International Journal of Pavement Engineering.2023,24:2181961.SCI IF= 3.8 中科院分区, 三 区
[20] Ma F, Wang Y, Fu Z, Tang Y, Dai J, Li C, et al. Thermal ageing mechanism of a natural rock-modified asphalt binder using Fourier Transform Infrared Spectroscopy analysis[J]. Construction and Building Materials 2022; 335:127494. SCI IF= 7.693, 中科院分区, 一 区,TOP
[21] Ma F, Jin Y, Fu Z, Dai J, Zhang P, Zhang C, et al. Influencing factors and evaluation methods of reinforcement effect of fiber‐modified asphalt binder[J]. Polymer Composites 2022; 43. SCI IF= 3.531, 中科院分区, 二区
[22] Shi K, Ma F*, Liu J, Song R-m, Fu Z, Dai J, et al. Development of a new rejuvenator for aged SBS modified asphalt binder[J]. Journal of Cleaner Production 2022; 380:134986. SCI IF= 11.1, 中科院分区, 一区,TOP
[23] Shi K, Fu Z*, Ma F*, Liu J, Song R-m, et al. Development on the Rheological Properties and Micromorphology of Active Reagent- Rejuvenated SBS-Modified Asphalt[J]. .ACS Sustainable Chemistry Engineering. 2022, 10, 50, 16734–16751. SCI IF= 9.224, 中科院分区, 一 区,TOP
[24] Li C, Ma F*, Fu Z, Dai J, Wen Y, Shi K. Using Cereclor plasticizer to modify the virgin asphalt binder: A case of rheological prperties improvement[J]. Construction and Building Materials 2022; 318:126039. SCI IF= 7.693, 中科院分区, 一区,TOP
[25] Li C, Ma F*, Fu Z, Dai J, Wen Y, Shi K. Investigation of the solution effects on asphalt binder and mastic through molecular dynamics simulations[J]. Construction and Building Materials 2022; 345:128314. SCI IF= 7.693, 中科院分区, 一区,TOP
[26] Dai J, Ma F*, Fu Z, Li C, Wu D, Shi K, et al. Assessing the direct interaction of asphalt binder with stearic acid/palmitic acid binary eutectic phase change material[J]. Construction and Building Materials 2022; 320:126251. SCI IF= 7.693, 中科院分区, 一区,TOP
[27] Fu Z, Tang Y, Ma F*, Wang Y, Shi K, Dai J, et al. Rheological properties of asphalt binder modified by nano-TiO2/ZnO and basalt fiber[J]. Construction and Building Materials 2022; 320:126323. SCI IF= 7.693, 中科院分区, 一区,TOP
[28] Ma F, Dong W H, Fu Z, et al. Life cycle assessment of greenhouse gas emissions from asphalt pavement maintenance: A case study in China [J]. Journal of Cleaner Production, 2021; 288 11. SCI IF=11.072, 中科院分区, 一区,TOP
[29] Ma F, Dai J S, Fu Z, et al. Biochar for asphalt modification: A case of high-temperature properties improvement [J]. Science of the Total Environment. 2021; 804 (1). SCI IF= 10.753, 中科院分区, 一区,TOP
[30] Ma F, Li C, Fu Z, et al. Evaluation of high temperature rheological performance of polyphosphoric acid-SBS and polyphosphoric acid-crumb rubber modified asphalt [J]. Construction and Building Materials, 2021; 306, 124926. SCI IF= 7.693, 中科院分区, 一 区,TOP
[31] Dai J S, Ma F*, Fu Z, et al. Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement[J]. Renewable Energy. 2021, 175(748-759). SCI IF= 8.634,中科院分区, 一区,TOP
[32] Ma F, Dai J, Fu Z, Liu J, Dong W, Huang Z. A New Type of Crumb Rubber Asphalt Mixture: A Dry Process Design and Performance Evaluation. Applied Sciences-basel. 2021; 10:10010372. SCI IF= 2.838,中科院分区, 三区
[33] Li C, Ma F*, Fu Z, et al. Evaluation of liquid rubber content and molecular weight on rheological properties of asphalt[J]. Journal of Applied Polymer Science. SCI IF=3.057 中科院分区, 三区
[34] Li C, Ma F*, Fu Z, Dai J, Wen Y, Wang Y. Rheological Behavior of Polyphosphoric Acid-Vulcanized Liquid Rubber Compound Modified Asphalt Binder. Iranian Journal of Science and Technology, Transactions of Civil Engineering 2022; 46. SCI IF=1.461 中科院分区, 四区
[35] Fu Z, Liu S, Ma F*, Guo X, Li C, Dai J, et al. Low-temperature rheological properties and micro-mechanism of DIBCH plasticizer modified bitumen. International Journal of Pavement Engineering 2021;1-11. SCI IF=4.178 中科院分区, 三区
[36] Fu Z, Shi K, Ma F*, et al. Rheological properties of dioctyl adipate-modified asphalt binder [J]. International Journal of Pavement Engineering, 2021,10. SCI IF=4.178 中科院分区, 三区
[37] Mu Y, Ma F*, Dai J S, et al. Investigation on High Temperature Rheological Behaviors and Fatigue Performance of Trans-Polyoctenamer-Activated Crumb Rubber Modified Asphalt Binder [J]. Coatings, 2020, 10 (8): 15. SCI IF=3.236,中科院分区, 三 区
[38] Dong W H, Ma F*, Li C, et al. Evaluation of Anti-Aging Performance of Biochar Modified Asphalt Binder [J]. Coatings, 2020, 1 (11): 19. SCI IF=3.236,中科院分区, 三区
注:*为通讯作者。
近5年主要中文论文为:
[1]马峰,邹彦哲,傅珍, 等.改性彩色沥青路面色彩耐久性与抗滑性能研究[J].功能材料,2024,55(02). CSCD
[2]史柯,马峰,宋瑞萌, 等.基于分子模拟的废大豆油再生沥青扩散行为[J].化工进展,2023,43(9).EI
[3]马峰,王正,傅珍,等.紫外吸收剂/环烷油对高寒区SBS沥青路面的性能影响[J].应用化工,2023,52(11). CSCD
[4]马峰,祝崇鑫,傅珍, 等.高黏复配改性沥青低温性能试验评价[J].广西大学学报(自然科学版),2023,48(01):30-39.
[5]马峰,安强,傅珍, 等.纳米ZnO/TiO2 对玄武岩纤维改性沥青性能影响[J].功能材料,2023,54(08):8192-8198. CSCD
[6]马峰,姜欣野,傅珍, 等.基于响应曲面法的TiO2/ZnO/BF改性沥青混合料性能分析[J].应用化工,2023,52(07):1968-1973. CSCD
[7] 马峰,彭冲,傅珍,等. PPA/LSBR复合改性沥青及混合料性能研究[J].功能材料,2023,54(01):1001-1006. CSCD
[8] 马峰,祝崇鑫,傅珍, 纪续,温雅噜,刘健.基于流变特性的复合相变调温沥青性能评估[J].功能材料,2022,53(09):9108-9114. CSCD
[9] 马峰,伍迪,傅珍,金彦鑫,等. SBS/废胶粉复合改性沥青及混合料路用性能[J].应用化工,2022,51(04):937-941.CSCD
[10]马峰,杨宇峰,纪续,等.玄武岩纤维沥青混合料力学 及疲劳特性[J].西安工业大学学报.2022,42(04):393-400.
[11]马峰,闫志彬,傅珍,等, 基于响应曲面法的玄武岩纤维沥青混合料设计及路用性能研究[J].功能材料,2021,52(12):12137- 12142+12151. CSCD
[12] 马峰,侯英杰,傅珍,等. ATBC增塑剂对沥青及沥青混合料性能的影响[J].功能材料,2021,52(10). CSCD
[13] 马峰,王雨函,傅珍,等. 玄武岩纤维沥青胶浆高低温性能影响因素[J].化工新型材料. 2021. CSCD
[14] 马峰,李思琪,傅珍,等. 苯乙烯-丁二烯嵌段共聚物与废橡胶粉复合改性高黏沥青及混合料性能研究[J].化工新型材料,2021,49(02):254-258. CSCD
[15] 马峰,温雅噜,傅珍,等. 多聚磷酸复合改性沥青混合料路用性能[J].应用化工,2021,50(04):887-891. CSCD
[16] 马峰,郭兴隆,傅珍,等. PPA/SBS及PPA/橡胶粉复合改性沥青性能[J].应用化工,2021,50(03):561-564. CSCD
[17]马峰,金彦鑫,傅珍,等. SEBS改性沥青混合料路用性能研究[J].郑州大学学报(工学版),2021,42(02):98-104.
[18]马峰,袁康博,傅珍,等.不同温拌剂对沥青混合料路用性能的影响[J].合肥工业大学学报(自然科学版).2021,44(11)
[19]马峰,王钰洁,傅珍,等. 不同温拌剂对沥青路用性能的影响[J].公路,2021,66(03):1-7.
[20]马峰,代佳胜,傅珍,等. SEBS改性沥青的路用性能研究[J].广西大学学报(自然科学版),2020,45(01):38-45.
[21]马峰,王蒙蒙,傅珍,等. 王博雅.SEBS/橡胶粉复合改性沥青高温流变性研究[J].公路工程,2020,45(06):59-65.
[22]马峰,李永波,傅珍,等. 复合纤维沥青混合料路用性能研究[J].河南理工大学学报(自然科学版),2020,39(01):157-163.
[23]马峰,李晨,傅珍,等. 基于流变的复合增强剂改性沥青高低温性能影响[J].公路,2020,65(04):300-305.
[24] 马峰,张耀,傅珍,等. 新型橡胶粉和抗车辙剂复合改性沥青混合料级配优化[J]. 武汉大学学报:工学版, 2019,052(008):687-693. CSCD
[25]马峰,董文豪,傅珍,等. 基于流变学的SEBS/橡胶粉复合改性沥青低温性能研究[J].功能材料,2019,50(06):6083-6087+6094. CSCD
[26]马峰,冯乔,傅珍,等. 不同级配复合改性沥青混合料路用性能[J].广西大学学报(自然科学版),2019,44(01):219-227.
[27]马峰,潘健,傅珍,等. 纤维沥青混合料最佳纤维掺量的确定[J].河南理工大学学报(自然科学版),2019,38(05):138-145
[28]马峰,刘健,傅珍,等. 适用高寒高海拔地区沥青混合料路用性能[J].公路,2019,64(11):1-6.
[29]马峰,杨田田,傅珍,赵屹峰,张超.大掺量橡胶沥青混合料的高低温性能[J].河北工业大学学报,2019,48(04):56- 60+66.2019.04.009.
[30]马峰, 邢海鹏, 卢现林. 回收沥青瓦在沥青路面再生应用中的研究进展[J]. 中国材料进展, 2018, 037(004):304-308. CSCD
[31]马峰,侯仁辉,傅珍,等. 不同类型增塑剂对沥青混合料性能的影响[J].公路,2018,63(09):237-241.
[32]马峰,张昭区,傅珍,等. 湿拌条件下PR PLAST.S抗车辙剂对沥青及沥青混合料的影响[J].公路工程,2018,43(04):105-109.
荣誉奖励