ABI,application binary interface (ABI),应用程序二进制接口。EABI中的E,表示“Embedded”,即嵌入式
应用二进制接口,是一种新的ABI。EABI支持软件浮点和硬件实现浮点功能混用,系统调用的效率更高,和今后的工具更兼容,软件浮点的情况下,EABI的软件浮点的效率要比OABI高很多。
总述
内核里面谈EABI,OABI,其实相对于
系统调用的方式,当然我们所说的系统限于arm系统。
关于EABI
什么是EABI?
Embedded application binary interface, 即嵌入式
应用二进制接口,是描述可连接
目标代码,库目标
代码,
可执行文件映像,如何连接,执行和调试,以及目标代码生成过程,和c,
c++语言接口的规范,是编译连接工具的基础规范,也是研究它们工作原理的基础,可惜arm的EABI迄今为止没有完全订好。作为EABI的组成部分有过程调用规范,可执行文件格式规范,
c/c++ ABI规范和调试格式规范。
mov r7, #num
swi 0x0
原来的系统调用方式是这样,
swi (#num | 0x900000) (0x900000是个magic值)
也就是说原来的调用方式(Old ABI)是通过跟随在swi指令中的调用号来进行的,现在的是根据r7中的值。
看两个宏,一个是
CONFIG_OABI_COMPAT 意思是说和old ABI兼容
另一个是
CONFIG_AEABI 意思是说指定方式为EABI
这两个宏可以同时配置,也可以都不配,也可以配置任何一种。
我说一下内核是怎么处理这一问题的。
我们知道,sys_call_table 在
内核中是个跳转表,这个表中存储的是一系列的
函数指针,这些指针就是
系统调用函数的指针,如(sys_open).系统调用是根据一个调用号(通常就是表的索引)找到实际该调用内核哪个函数,然后运行该函数完成的。
首先,对于old ABI,内核给出的处理是给它建立一个单独的system calltable,叫sys_oabi_call_table,这样,兼容方式下就会有两个system call table, 以oldABI方式的系统调用会执行old_syscall_table表中的
系统调用函数,EABI方式的系统调用会用sys_call_table中的
函数指针。
配置无外乎以下4中
第一 两个宏都配置 行为就是上面说的那样
第二 只配置CONFIG_OABI_COMPAT , 那么以old ABI方式调用的会用sys_oabi_call_table,以EABI方式调用的 用sys_call_table,和1实质相同,只是情况1更加明确。
第三 只配置CONFIG_AEABI 系统中不存在 sys_oabi_call_table, 对old ABI方式调用不兼容。只能 以EABI方式调用,用sys_call_table
第四 两个都没有配置 系统默认会只允许old ABI方式,但是不存在old_syscall_table,最终会通过sys_call_table 完成
函数调用可以参考下面的代码
对我们的项目比较有用。
.align 5
ENTRY(vector_swi)
sub sp, sp, #S_FRAME_SIZE
stmia sp, {r0 - r12} @ Calling r0 - r12
add r8, sp, #S_PC
stmdb r8, {sp, lr}^ @ Calling sp, lr
mrs r8,
spsr @ called from non-FIQ mode, so ok.
str lr, [sp, #S_PC] @ Save calling PC
str r8, [sp, #S_PSR] @ Save CPSR
str r0, [sp, #S_OLD_R0] @ Save OLD_R0
zero_fp
/*
* Get the system call number.
*/
#if defined(CONFIG_OABI_COMPAT)
/*
* If we have CONFIG_OABI_COMPAT then we need to look at the swi
* value to determine if it is an EABI or an old ABI call.
*/
tst r8, #PSR_T_BIT
movne r10, #0 @ no thumb OABI emulation
ldreq r10, [lr, #-4] @ get SWI instruction
#else
ldr r10, [lr, #-4] @ get SWI instruction
A710( and ip, r10, #0x0f000000 @ check for SWI )
A710( teq ip, #0x0f000000 )
A710( bne .Larm710bug )
#elif defined(CONFIG_AEABI)
/*
* Pure EABI user space always put syscall number into scno (r7).
*/
A710( ldr ip, [lr, #-4] @ get SWI instruction )
A710( and ip, ip, #0x0f000000 @ check for SWI )
A710( teq ip, #0x0f000000 )
A710( bne .Larm710bug )
#elif defined(CONFIG_ARM_THUMB)
/* Legacy ABI only, possibly thumb mode. */
tst r8, #PSR_T_BIT @ this is SPSR from save_user_regs
addne scno, r7, #__NR_SYSCALL_BASE @ put OS number in
ldreq scno, [lr, #-4]
#else
/* Legacy ABI only. */
ldr scno, [lr, #-4] @ get SWI instruction
A710( and ip, scno, #0x0f000000 @ check for SWI )
A710( teq ip, #0x0f000000 )
A710( bne .Larm710bug )
#ifdef CONFIG_ALIGNMENT_TRAP
ldr ip, __cr_alignment
ldr ip, [ip]
mcr p15, 0, ip, c1, c0 @ update control register
#endif
enable_irq
get_thread_info tsk
adr tbl, sys_call_table @ load syscall table pointer
ldr ip, [tsk, #TI_FLAGS] @ check for syscall tracing
#if defined(CONFIG_OABI_COMPAT)
/*
* If the swi argument is zero, this is an EABI call and we do nothing.
*
* If this is an old ABI call, get the syscall number into scno and
* get the old ABI syscall table address.
*/
bics r10, r10, #0xff000000
eorne scno, r10, #__NR_OABI_SYSCALL_BASE
ldrne tbl, =sys_oabi_call_table
#elif !defined(CONFIG_AEABI)
bic scno, scno, #0xff000000 @ mask off SWI op-code
eor scno, scno, #__NR_SYSCALL_BASE @ check OS number
#endif
stmdb sp!, {r4, r5} @ push fifth and sixth args
tst ip, #_TIF_SYSCALL_TRACE @ are we tracing syscalls?
bne __sys_trace
cmp scno, #NR_syscalls @ check upper syscall limit
adr lr, ret_fast_syscall @ return address
ldrcc pc, [tbl, scno, lsl #2] @ call sys_* routine
add r1, sp, #S_OFF
2: mov why, #0 @ no longer a real syscall
cmp scno, #(__ARM_NR_BASE - __NR_SYSCALL_BASE)
eor r0, scno, #__NR_SYSCALL_BASE @ put OS number back
bcs arm_syscall
b sys_ni_syscall @ not private func
/*
* This is the really slow path. We're going to be doing
* context switches, and waiting for our parent to respond.
*/
__sys_trace:
mov r2, scno
add r1, sp, #S_OFF
mov r0, #0 @ trace entry [IP = 0]
bl syscall_trace
adr lr, __sys_trace_return @ return address
mov scno, r0 @ syscall number (possibly new)
add r1, sp, #S_R0 + S_OFF @ pointer to regs
cmp scno, #NR_syscalls @ check upper syscall limit
ldmccia r1, {r0 - r3} @ have to reload r0 - r3
ldrcc pc, [tbl, scno, lsl #2] @ call sys_* routine