一次方程也被称为
线性方程,因为在
笛卡尔坐标系上任何一个一次方程的表示都是一条
直线,因此组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积,且方程中必须包含一个变量。因为如果没有变量只有常数的式子是算数式而非方程式。
一次方程式也被称为
线性方程,因为在
笛卡尔坐标系上任何一个一次方程的表示都是一条
直线。组成一次方程的每个项必须是
常数或者是一个常数和一个
变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是
代数式而非方程式。
3x-17=-17x+3.
20x=20.
x=1.
解2x-1=9.
得x=5.
再代入x+y=36.
即5+y=36.
从而求出y=36-5=31.
y+2y=13+2.
y=5.
一个函数如果满足这样的特性就叫做线性函数,或者更一般的,叫
线性化。
因为线性的独特属性,在同类方程中对线性函数的解决有
叠加作用。这使得线性方程最容易解决和推演。
线性方程在
应用数学中有重要规律。使用它们建立模型很容易,而且在某些情况下可以假设变量的变动非常小,这样许多
非线性方程就转化为线性方程。