交易模型
理论模型
交易模型的理论基础其实非常广泛,涵盖了国际上许多先进的理论,其中包括现代金融投资学、金融工程学金融行为学、金融会计学、财会学、计量经济学、混沌学、仿真学等现代多学科众多理论;同时它还包括了传统的技术分析理论,如均线理论、图形分析理论、波浪理论等,并充分利用电脑、通讯等现代科学技术。交易模型分类的方法比较多,可以根据使用者分类,也可以根据模型理论分类。模型理论分类主要有三种分类方法。
简介
当然,投资领域中永远不存在所谓的“终极真理”,每种理论都有其假设前提,因此也就存在一定局限性,量子基金、美国长期资本管理基金的兴衰从一个侧面就说明了这个问题。因此,作为交易模型的倡导者,我们认为,交易模型的理论基础是设立交易模型过程中一个非常重要的环节,设计者一定要对自己应用的理论基础有充分的理解,充分认识单一理论可能存在的缺陷,并博取百家之长,利用各家理论的互补性,来完成具有自己交易特点的交易模型,并在实践中不断完善。
分类
技术分析法是指投资者通过考察交易数据中有预测价值的模式,然后通过考察近期及当前价格的状况,并根据这种模式进行投资的方法。这种方法有着大量的手段和变化的花样,有的仅仅是使用可视的图表,如K线图、点线图;有的则使用系统化搜索程序的“优化”的计算机模型
基本分析法,也称原本分析法,是指投资者通过对所有影响基本经济关系的信息进行考察,并从这类信息中找出判断市场均衡价格而进行投资的方法。该方法从最简单的直觉分析到最复杂、数学极其高深的经济学模型,这种模型无所不有。
3、数学计量法
数学计量法是指投资者根据现代投资理论,通过对历史交易数据进行大量的统计学分析,从中找出一定的规律,在市场出现偏差时进行投资的方法。该方法通常由一个乃至多个复杂的数学模型组成。
设计方法
在这里主要参考各类有关资料的分类方法,将其分为以下三类模型:技术分析交易模型、基本分析交易模型、数学计量交易模型。
1、技术分析交易模型
技术分析交易模型是指使用市场交易数据如开市价收市价成交量等,并通过计算机交易指标,经过系统化搜索检验,并进行优化处理的交易模型,其理论基础主要建立在已有的传统技术投资理论如图型分析、均线理论等基础之上,并经过大量统计学分析检验。该模型最大的优点在于:消除了投资者的情绪在交易决策中的影响,特别是在对重大事件中判断的主观性和盲目性;避免了由于信息不对称性造成的分析失误;保证了交易分析中的连贯性;给投资者提供了风险控制的方法。
下面重点讨论技术分析交易模型中的三个交易模型:
(1)以图形形态识别为基础的交易模型
该类模型主要是依据传统的经典图形如头肩顶双底、三角形等,进行行情趋势捕捉,进行建仓交易的系统。但在实战中,它还存在许多问题:风险控制方面,像头肩顶、双底、三角形等交易图,根据传统的交易观点,投资风险/报酬比一般为1:1,实战中管理者将面对巨大的基金净值风险;分析上多以主观判断为主,缺乏客观判断标准;目前国内期货市场的技术分析使用者增多,导致经典的图表形态假信号随之增多;国外经典的图表分析理论在国内存在相当大的差别;缺乏统计学数据。
(2)趋势跟踪为基础的交易模型
该类模型主要是根据设计者的数据统计,捕捉价格的转折点,然后假定趋势会继续,并按趋势方向建仓交易的系统,如MACD、SAR、移动平均线等。该交易模型的特点是不会在最低价处买入,也不会在最高价处卖出,放弃行情前后一段的利润,利润主要来源于捕捉一波大行情的中间部分。其捕捉行情的转折点的能力根据设计者设计的灵敏度不同而不同,灵敏度强的交易模型对趋势反转反应迅速,但假信号也多;灵敏度低的交易模型对趋势反转反应慢,假信号也少,放弃的前后部分的利润也多。该类交易模型的缺点是在盘整行情时产生连续亏损,使投资者不能接受。所以设计趋势跟踪交易模型的难度不在于寻找捕捉趋势方法,而在于要有一套完善的趋势确认和过滤原则,才能回避风险。另外,趋势跟踪交易模型要求期货基金管理者的持仓时间比较长,一般都有2-3个月以上,所以要求期货基金管理者要有一套与趋势跟踪交易模型相适应的心理控制方法。
(3)反趋势为基础的交易模型
该类模型是根据设计者的数据统计,然后假定市场需要调整,并在相反方向建仓交易的系统。它与趋势交易模型的区别在于,趋势交易模型可以自动调整,而反趋势交易模型由于与主要趋势相反操作经常会带来不可估量的风险,所以该类交易模型必须带有一套止损条件。
2、基本分析交易模型
基本分析交易模型是指交易者使用市场外的数据信息,通过对所有影响基本经济关系的信息进行考察,并对这类因素进行量化分析,建立数据库,从中判断市场的均衡价格而进行投资的模型。该模型的特点主要是:为大规模资金进场提供良好的分析依据;理论基础雄厚,容易为投资大众接受;对于短线和时机把握帮助不大;信息收集难度大;分析滞后于市场价格;分析主观性强。
下面介绍“价值评估”和“评估积分”两种基本分析交易模型。
(1)价值评估交易模型
期货价格现货价格将产生相互牵引的作用,据资料统计,近10年来,我国大豆期价与现货价格的相关系数为0.9。而对于期货市场产生的期货价格,期货市场的参与者包括现货商和投机者,对同一商品的期货价格有自己的判断,而由于成熟的期货市场绝大多数的参与者是投机者,期货市场的成交量往往是现货贸易量的数倍或数十倍,所以期货价格不单是由现货价格和仓储成本决定的,除了成本定价还包括资本定价部分。所以,作为期货基金的基本分析交易模型,还要包括期货市场的投机因素:期货价格=(现货价格+仓储成本)×投机系数。投机系数根据突发事件、市场投机资金等情况确定。
(2)积分评估交易模型
基本分析交易模型的主要缺点是信息收集难度大造成的信息不对称,分析滞后于市场价格且分析主观性强,但随着信息科技的发达和交易制度的完善,信息的公平共享将进一步缩小信息不对称,最新信息的获取也相对容易了,困难的是如何去辨别信息真伪、主次和克服信息处理中过分主观判断的影响。积分评估交易模型的主要步骤如下:
A、确定分析因素
为了使分析统计因素保持全面,多空两方面分析因素的数量不能过少,一般不少于5个。如供求分析因素,以大豆期货为例,供求类因素包括:预测种植面积和实际种植面积因素;预测产量和实际产量因素;大豆进出口量;大豆压榨加工量;库存因素;突发事件因素等。
再比如周期性分析因素,还以大豆为例,周期性分析因素包括:3-4月份左右——中美大豆播种期,种植面积预测因素,同时南美新豆开始上市,价格处在谷底。5-8月份左右——中美大豆的天气与产量为主要分析预测因素,消费旺季到来,价格从前期的缓慢上升,至7、8月份大豆受青黄不接和天气炎热等波动因素的影响,价格达到年度高峰。9-11月份左右——中美大豆实际收成因素、南美大豆播种面积预期因素,10月份后由于中美新豆上市,价格再次回落至当年的最低价区域。
B、确定分析的时间段
无论何种交易模型的分析方法,都需要足够统计分析样本数据,才能保证统计结果的可靠性,因此要经历一个以上的循环周期,如农产品的生长周期、金属的经济周期等,其中更应该包含突发事件或政治的因素,以检测交易分析模型应对的能力和控制风险能力。
C、确定分数值
确定分数值的方法可以使用普通正负分数法、权重分数百分比值法等,利多因素的分值为正值,利空因素的分值为负值,无明确利多、利空倾向的因素取为0分。
D、计算分值结果
将各影响因素的分数值累计,得出分值结果,分数为正数,则市场的趋势以上升为主;分数为负数,则市场的趋势以下跌为主;分数为0或接近0分,市场将处于盘整。
E、分值跟踪系统
不同事件的发生和时间的推移变化,各因素对价格的影响不一,如突发事件对价格的影响随事件的变化影响力会逐渐消退,所以要对各因素分数值不断调整,确定分数结果,调整对交易模型的决策结果。
3、数学计量交易模型
数学计量交易模型是指设计者根据现代投资理论,对历史交易数据进行大量的统计学分析,从中找出一定规律,在市场出现偏差时或特定情况时进行投资的模型,如套利交易模型、跳空交易模型等。
从使用者角度进行分类,主要有以下两种:一种是分析型的交易模式,另一种是操作型的交易模型,技术分析交易模型和基本分析交易模型之间有着相当大的区别:
1、分析型的交易模型侧重于预见性,对于市场的走势分析具有提前性;而操作型的交易模型侧重于反应式,当市场已出现某种价格应该采取的交易决策。
2、分析型的交易模型侧重于个别效益,对某段市场的行情要求高准确度,忽略对不利市场情况的分析;而操作型的交易模型着重于实战中的整体效益,要求交易模型对市场的所有情况产生的收益结果作出整体评估。
3、两者最大的区别在于实际操作者要面对来自各方面的压力,包括市场、投资者、基金管理者自己等的压力,因此在模型上的设计还应包括如何通过某种方法去控制心理压力的因素,有效执行交易模型发出的信号。
系统程序化
作为职业基金管理者,其投资行为必须具有一定的逻辑性和科学性,投资决策要求客观、迅速,不能带有模糊不清的分析和主观判断,而系统化的交易决策模型可以通过现代计算机技术将传统的交易方式转换成为数学模型,并通过大量的信息和数据进行检验分析,评估交易模型的可行性,从而做到严格的定性和定量,保证了投资决策的科学性。
交易模型系统程序化的步骤:a.确定交易模型的交易原则,进出场的信号确定、资金使用比例、风险控制原则等,如KD低位交叉为买入信号,高位交叉为卖出信号;b.确定交易模型中的参数和自变量,如KD指标中的天数等;c.将交易模型程序化,按计算机语言将交易模型转换公式,使交易模型的检验过程能通过计算机进行客观的检验。
模拟检验
模拟是对建立的系统或决策问题的数学或逻辑模型进行试验,以获得对系统行为的认识或帮助解决决策问题的过程。模拟的主要优点在于检验交易模型中的问题或系统的任何假设模型化的能力,使它成为最灵活的工具。判断交易模型是否有实用价值,最简单、最可靠的途径是通过在尽量多的市场里,进行长时间的测试。为了减少交易模型的检测成本,检测先从模拟开始。交易模型检验的基本原则是“模拟实战”,一切条件都要接近实战条件,使检验结果尽可能真实,因为只有这样才能使交易模型有真正的使用价值
1.突发事件
在检验过程中一定要包含有突发事件(包括涨跌停板),因为除了要检验交易模型在正常情况下的运作情况,还要有应付突发事件的能力,不能因为是“小概率”事件而忽略了突发事件的影响,应遵循“模拟实战”的基本原则。一个成熟的交易模型,即使不能捕捉到突发事件带来的超额利润,也应该有能力抵抗突发事件带来的风险。
2.检验的信息和数据
对于基本分析交易模型,需要有完善的信息数据库,信息的来源随着科技的发达,互联网的不断应用,信息的收集比以前方便了许多,因此要整理完善好信息数据库相对较容易。对于技术分析交易模型,由于期货基金运作的是期货品种,期货品种的数据有它的独特性,欧美期货的数据有各自不同的特点,如伦敦金属的期货数据没有出现“断层现象”,使用计算机检验就不会有问题,而国内的期货数据源袭了美式期货数据,不同的交易合约换月时会出现“数据断层”,不能像股票一样使用简单的除权处理,因此要通过交易模型的检验首先对数据进行处理。
实际合约数据:按照实际的合约交易数据,缺点是十分明显的,因为国内期货合约目前只有1年的周期,因此在检验时数据周期就显得太短了,而且在相当长的交易时间内合约的成交量并不活跃,流动性小,不具有代表意义。
即月连续数据:按合约交割日连接,连接起来形成连续数据。这样产生的连续数据优点是具有实际交易性,但在实战交易中会产生差别,交割前成交不活跃,缺乏代表性,像上海铜一般都是交割月后第四、五个合约成交活跃;缺点则是会产生“断层现象”,对检验结果产生重大的失真。
价差调整连续数据:按照一定的规则,在进入交割前一定时间内连接随后的合约数据,这里的时间参数X,要根据不同品种来确定,上海铜要比大连大豆和郑州小麦的时间参数X要大,将调整时两个合约的价差累计下来,最后将累计价差加减到数据列中,得出最终的期货数据。特别注意的是,经过调整的期货数据可能会出现负值,要做相应的数据调整,但这不会影响使用计算机检测的交易结果。优点是能长时间反映价格变化水平;缺点是数据不能直接应用于实际交易中,需要通过转换。
权重连续数据:按照固定的时间连接随后的合约数据,同时按近月大、远月小或是按成交量持仓量的比重计算连续价格,随着时间的推移,较近的合约的权重越来越小,而远月的权重越来越大。优点是消除了数据“断层现象”,可以选取多个活跃月份,这样就可以更真实地贴近实战交易;缺点也是数据不能直接应用于实际交易中,需要通过转换。
以上四种数据处理方式各有所长,要根据使用者的情况选用。对于短线使用者,实际合约数据较好,而对于中长线的使用者连续数据才能真实反映实际中长期的盈亏情况,并进行计算机的检测。在对交易模型的检测中,为了保证检验结果的可靠性和稳定性,需要足够的统计样本数据,按照统计学的大样本要求,样本数量要多于30个。以短线为主的交易模型,数据时间不能短于1年的分时数据,使用日线数据检测的不能少于3年以上,基本分析交易模型的数据要求要经历一个以上的循环周期。
优化
根据交易模型模拟检验后的交易成绩数据,对成功率高且有实用价值的交易模型的参数进行调试,以达到最佳效果。交易模型优化分为:
1.交易模型的参数优化:一种是围绕原定的参数为中心的微调,一种是大范围的跳跃式的搜索。
2.交易模型的交易规则调整:增减交易模型的交易规则和增减的变量,目的是改善交易模型的成绩而不是重新设计新的交易模型。
交易模型优化的基本要求是模拟期和优化期不能重叠,否则就不能使交易模型具有适应性和稳定性,降低了交易模型的实用性。交易模型优化的另一个重要意义在于减少了交易模型的噪音,也就是假信号,因为这是交易模型中无法避免的,噪音过低会走入优化陷阱,交易模型的市场适应性会减低;而噪音过高,交易模型就没有实用价值。根据资料条件,理想的噪音水平在10%-30%左右。
实战检验
在经历了模拟检验和优化后,交易模型将进入实战检验阶段。模拟检验和实战检验的重大区别在于心理的压力,这也是分析家和投资家的区别。交易模型的实战压力主要产生在两个时期:
1.当交易产生相当利润的时候。由于期货基金的管理者担心利润流失和顾虑投资者的压力,会产生心理动摇、不等待交易模型发出离场信号,就主观判断离场。这样就不能体现交易模型的前后一致性和客观性,令交易结果产生不稳定性和不可比性。
2.当交易产生连续性的亏损时。根据混浊理论,交易模型的噪音(假信号)分布具有随机性和集中性,所以当交易模型出现连续性的噪音(假信号)时,会对交易模型的使用者产生较大的心理压力,对交易模型产生怀疑,甚至产生放弃的思想。这时应该检查交易记录和交易模型的设计理念,看是否由于没有严格执行交易模型发出的信号而产生了失误,或是由于交易模型的缺陷造成的失误,然后有的放矢地解决问题。例如,在郑州绿豆1998年3月-9月和大连大豆1999年9月-2000年的5月期间,行情进入无趋势市场,对于使用趋势跟踪为基础的交易模型产生的连续性亏损,就是交易模型中趋势型交易模型本身的缺陷造成的,但这也不能完全否定趋势型交易模型的实用价值。
交易模型进入实战检验阶段除了是对交易模型的检验,同时也是对交易模型使用者的心理和性格的检验。交易模型使用者应付心理压力的能力(包括应付市场的压力和来自投资者的压力)和是否有与交易模型相适应的性格、生活方式才是交易模型成功的最关键的因素。
跟踪分析和调整
交易模型进入实战使用阶段,需要对交易模型的不同情况进行跟踪分析和调整,为交易模型使用者和投资者提供统计资料。对交易模型的调整是在大量的交易资料分析基础上进行的,调整只能是阶段性的调整,不能随机调整,因为只有在积累了具有统计意义的足够数量的交易数据样本后,才能做出相应的调整。另外,在投资市场产生重大变化、新品种上市之初、市场的交易规则出现变化时,也要对交易模型做出相应调整。随着投资技术分析理论的不断进步发展,投资市场也不断发展成熟,交易模型也在不断完善,期货基金的交易模型也将得到不断发展。
评估
对于交易模型的收益和风险评估,很多投资者往往只关心净利润回报率,而忽略了交易模型的风险测量评估,其实这正是交易模型最为关键的部分。
两个管理者的起始净值和到期净值一样,但是管理者A的期货基金的净值在中间经历了大幅起落,使投资者在投资途中的风险加大,加大了投资者和管理者的心理压力,管理者可能产生情绪波动,不能很好地执行交易模型的交易信号,产生了非市场性风险,投资者也将很可能在中途赎回基金投资,而不能取得最后的回报。
而管理者B的期货基金的净值在中间相对平稳,投资者所面临的风险减少,投资者和管理者心态平稳,管理者不去追求短期的高回报,净值则稳定增长,管理者完成交易模型成功的概率也比管理者A的期货基金要大。
交易模型的评估项目大体包括:净利润、回报率、总交易次数、盈亏次数比率、标准离差/标准离差率、回报回调率、风险指标d七个方面。
标准离差/标准离差率
期货基金交易模型常用的收益和风险评估是标准离差/标准离差率,因为标准离差/标准差离率越小,说明交易模型的收益分布概率越集中,期货基金交易模型实际收益越接近理论收益,风险越低。评估步骤如下:
1.计算交易模型收益期望值
E=∑Xi×Pi,E为收益期望值、Xi为第i笔交易的收益、Pi为第i种结果收益的概率。
2.计算交易模型的收益标准离差
δ=∑(Xi-E)2×Pi
V=δ÷E
4.权衡交易模型优劣
选择收益高且标准离差率小的交易模型。
风险指标d
在使用标准离差率对期货基金交易模型收益和风险评估的前提条件是交易模型的分布必须符合正态分布,也就收益分布是对称的,对于不符合正态分布的交易模型的收益和风险评估就没有意义了。往往出现收益为负的交易模型的标准离差率小于收益为正的交易模型,因此我们在这里引入了风险指标d。
d=|∑n÷∑c|,∑n为交易模型收益小于0的次数和收益的乘积、∑c为交易模型收益大于0的次数和收益的乘积。
引入风险指标d的好处是不用对交易模型的收益分布做任何假设,就可以对交易模型的收益进行比较。
参考资料
最新修订时间:2024-08-30 18:06
目录
概述
简介
分类
参考资料