概率,亦称“或然率”,它是反映
随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。该常数即为事件A出现的概率,常用P (A) 表示。
历史
第一个系统地推算概率的人是
16世纪的
卡尔达诺。记载在他的著作《Liber de Ludo Aleae》中。书中关于概率的内容是由Gould从拉丁文翻译出来的。
卡尔达诺的数学著作中有很多给
赌徒的建议。这些建议都写成短文。然而,首次提出系统研究概率的是在
帕斯卡和
费马来往的一系列信件中。这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由Chevvalier de Mere提出的问题。Chevvalier de Mere是一知名作家,
路易十四宫廷的显要,也是一名狂热的赌徒。问题主要是两个:掷骰子问题和比赛奖金分配问题。
概率是度量偶然事件发生可能性的数值。假如经过多次重复试验(用X代表),偶然事件(用A代表)出现了若干次(用Y代表)。以X作分母,Y作分子,形成了数值(用P代表)。在多次试验中,P相对稳定在某一数值上,P就称为A出现的概率。如偶然事件的概率是通过长期观察或大量重复试验来确定,则这种概率为统计概率或经验概率。
研究支配偶然事件的内在规律的学科叫概率论。属于数学上的一个分支。概率论揭示了偶然现象所包含的内部规律的表现形式。所以,概率,对人们认识自然现象和社会现象有重要的作用。比如,社会产品在分配给个人消费以前要进行扣除,需扣除多少,积累应在国民收入中占多大比重等,就需要运用
概率论来确定。
定义
来源
概率(Probability)一词来源于拉丁语“probabilitas”,又可以解释为 probity.Probity的意思是“正直、诚实”,在欧洲probity用来表示法庭案例中证人证词的权威性,且通常与证人的声誉相关。总之与现代意义上的概率“可能性”含义不同。
古典定义
如果一个试验满足两条:
(1)试验只有有限个基本结果;
(2)试验的每个基本结果出现的可能性是一样的。
这样的试验便是古典试验。
对于古典试验中的事件A,它的概率定义为:P(A)=,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A
包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。
频率定义
随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von
米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。
统计定义
在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义称为概率的统计定义。
在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是
雅各布·伯努利(Jacob Bernoulli)。
从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个
数量指标。
由于频率总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分别表示
必然事件(在一定条件下必然发生的事件)和
不可能事件(在一定条件下必然不发生的事件)。
公理化定义
柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:
设E是随机试验,S是它的
样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件:
(1)非负性:对于每一个事件A,有P(A)≥0;
(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……
性质
概率具有以下7个不同的性质:
性质1:;
性质2:(
有限可加性)当n个事件A1,…,An两两互不相容时: ;
性质3:对于任意一个事件A:;
性质4:当事件A,B满足A包含于B时:,;
性质5:对于任意一个事件A,;
性质6:对任意两个事件A和B,;
性质7:(加法公式)对任意两个事件A和B,。
名词
事件
在一个特定的随机试验中,称每一可能出现的结果为一个
基本事件,全体基本事件的集合称为基本空间。随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合{(1,1)}表示,“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合{(1,3),(3,1),(2,2)}表示。如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为
不可能事件。P(不可能事件)=0。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件,在试验中此事件一定发生,称为
必然事件。P(必然事件)=1。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种
子集及其相互关系等进行研究。
在一定的条件下可能发生也可能不发生的事件,叫做
随机事件。
通常一次实验中的某一事件由基本事件组成。如果一次实验中可能出现的结果有n个,即此实验由n个基本事件组成,而且所有结果出现的可能性都相等,那么这种事件就叫做
等可能事件。
概型
古典概型讨论的对象局限于
随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或
基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概型定义,或称之为概率的古典定义。历史上古典概型是由研究诸如掷骰子一类赌博游戏中的问题引起的。计算古典概型,可以用
穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。
几何概型若随机试验中的基本事件有无穷多个,且每个
基本事件发生是等可能的,这时就不能使用古典概型,于是产生了几何概型。几何概型的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,
布丰投针问题是应用几何概型的一个典型例子。
设某一事件A(也是S中的某一区域),S包含A,它的量度大小为μ(A),若以P(A)表示事件A发生的概率,考虑到“均匀分布”性,事件A发生的概率取为:P(A)=μ(A)/μ(S),这样计算的概率称为几何概型。若Φ是不可能事件,即Φ为Ω中的空的区域,其量度大小为0,故其概率P(Φ)=0。
在
概率论发展的早期,人们就注意到古典概型仅考虑试验结果只有有限个的情况是不够的,还必须考虑试验结果是无限个的情况。为此可把无限个试验结果用欧式空间的某一区域S表示,其试验结果具有所谓“均匀分布”的性质,关于“均匀分布”的精确定义类似于古典概型中“等可能”这一概念。假设区域S以及其中任何可能出现的小区域A都是可以度量的,其度量的大小分别用μ(S)和μ(A)表示。如
一维空间的长度,
二维空间的面积,
三维空间的体积等。并且假定这种度量具有如长度一样的各种性质,如度量的非负性、可加性等。
区别频率
对事件发生可能性大小的量化引入“概率”。
独立重复试验总次数n,事件A发生的频数μ,事件A发生的频率Fn(A)=μ/n,A的频率Fn(A)有没有稳定值?如果有,就称频率μ/n的稳定值p为事件A发生的概率,记作P(A)=p(概率的统计定义)。
P(A)是客观的,而Fn(A)是依赖经验的。统计中有时也用n很大的时候的Fn(A)值当概率的近似值。