古典概型也叫传统概率、其定义是由
法国数学家
拉普拉斯 (Laplace ) 提出的。如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个
随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。
如果一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包含的结果有m个,那么事件A的概率为P(A)==A包含的基本事件的个数m/基本事件的总数n
古典概率模型是在
封闭系统内的模型,一旦系统内某个事件的概率在其他概率确定前被确定,其他事件概率也会跟着发生改变。
概率模型会由古典概型转变为
几何概型。
投掷一个质地均匀,形状规范的硬币,正面和反面出现的概率是一样的,都是1/2。很多人会有问,为什么正面和反面出现的概率是一样的?显然,硬币是质地均匀,形状规范的,哪一面都不会比另一面有更多的出现机会,正面和反面出现的概率是一样的。这称为古典概型的对称性,体育比赛经常用到这个规律来决定谁开球,谁选场地。为了解释这个现象,在历史上,有很多大师对这个问题进行过验证结果可以看出,随着次数的不断增加,正面出现的频率越来越接近50%,我们也有理由相信,随着次数的继续增加,正面和反面出现的频率将固定在1/2处,即正面和反面出现的概率都为1/2。
这是个典型的古典概型的例子,它的特点是:实验结果只有有限个,而且每个实验结果出现的概率是一样的。正因为这两个特点,我们能够很容易算出来每个实验结果出现的概率,应该是实验结果个数的倒数。如上例中,实验结果只有正面和反面,所以,正面和反面出现的概率为2的倒数1/2。