古核生物
极端特殊环境中的细菌
古核生物是一些生长在极端特殊环境中的细菌。在深海的火山口、陆地的热泉以及盐碱湖等生命无法生存的地方,生活着的一些鲜为人知的古怪微生物。过去根据其内部构造没有核膜、具环状DNA结构以及细胞产能、细胞分裂、新陈代谢等生活方式与原核细胞相似,将古细菌归入原核生物。很多古核生物是生存在极端环境中的。古细菌可能是最古老的生命体。
简介
古核生物(archaeon),或称古细菌(archaebacteria),是20世纪80年代出现的名称。是一些生长在极端特殊环境中的细菌,过去把它们归属为原核生物是因为其形态结构、DNA结构及其基本生命活动方式与原核细胞相似。最早发现的是产甲烷细菌类,根据其16SrRNA核苷酸序列的同源性测定分析,它与其他原核细胞相差甚远。而其16SrrNA序列分析和其他一些分子生物学特征却与真核细胞更为近似。后来陆续又发现其他的,如盐细菌( halobacteria,生长在浓度大的盐水中)、热原质体(thermoplasma,生长在煤堆中)、硫氧化菌(sulfolobus,生长在硫磺温泉中)。现已发现100多种,并将它们分类为目、科、属、种。它是与人类生活关系不大的一类原核生物,尤其是因为它们生存在极度特殊的,非一般生物能生存的高温或高盐的环境中,长期不为人们所重视。
随着进化分子生物学与进化细胞生物学的兴起,特别是发现在海洋深处的热泉口,很温暖的环境中存在的众多嗜热细菌,人们很自然联想到这些古细菌与地球早期生命环境的关系,设想它们可能在细胞起源与进化中扮演过重要角色,因此古核生物引起了越来越多学者的重视。对古核生物有很多根本性的问题值得研究;诸如古核细胞的结构功能特点及其嗜热嗜盐的特性,它们与真细菌和真核细胞在进化上的关系等等。现在已有更多的论据说明真核生物可能是起源于古核生物。
定义
古细菌(archaeobacteria)(又可叫作古生菌、古菌、古核细胞或原细菌)是一类很特殊的细菌,多生活在极端的生态环境中。具有原核生物的某些特征,如无核膜及内膜系统;也有真核生物的特征,如以甲硫氨酸起始蛋白质的合成、核糖体对氯霉素不敏感、RNA聚合酶和真核细胞的相似、DNA具有内含子并结合组蛋白;此外还具有既不同于原核细胞也不同于真核细胞的特征,如:细胞膜中的脂类是不可皂化的;细胞壁不含肽聚糖,有的以蛋白质为主,有的含杂多糖,有的类似于肽聚糖,但都不含胞壁酸D型氨基酸二氨基庚二酸
生存环境
很多是生存在极端环境中的。一些生存在极高的温度(经常100℃以上)下,比如间歇泉或者海底黑烟囱中。还有的生存在很冷的环境或者高盐、强酸或强碱性的水中。然而也有些是嗜中性的,能够在沼泽、废水和土壤中被发现。很多产甲烷的古核生物生存在动物的消化道中,如反刍动物、白蚁或者人类。通常对其它生物无害,且未知有致病古菌。
形态
单个古核生物细胞直径在0.1到15微米之间,有一些种类形成细胞团簇或者纤维,长度可达200微米。它们可有各种形状,如球形、杆形、螺旋形、叶状或方形。它们具有多种代谢类型。值得注意的是,盐杆菌可以利用光能制造ATP,尽管不能像其他利用光能的生物一样利用电子链传导实现光合作用。古生菌微小,一般小于1m,菌株有G+和G,与真细菌相比,形态也是多种多样细胞形态有的像细菌那样为球形、杆状,也有叶片状、块状、螺旋状、八叠球状、短杆状状、盘状、丝状,特别奇怪的是,还有方形、三角形和不规则状的。
进化和分类
从rRNA进化树上,古菌分为两类,泉古菌(Crenarchaeota)和广古菌(Euryarchaeota)。另外未确定的两类分别由某些环境样品和2002年由Karl Stetter发现的奇特的物种纳古菌(Nanoarchaeum equitans)构成。 Woese认为细菌、古菌和真核生物各代表了一支具有简单遗传机制的远祖生物的後代。这个假说反映在了“古菌”的名称中(希腊语archae为“古代的”)。随後他正式称这三支为三个域,各由几个界组成。这种分类後来非常流行,但远组生物这种思想本身并未被普遍接受。一些生物学家认为古菌和真核生物产生於特化的细菌。
古核生物和真核生物的关系仍然是个重要问题。除掉上面所提到的相似性,很多其他遗传树也将二者并在一起。在一些树中真核生物离广古菌比离泉古菌更近,但生物膜化学的结论相反。然而,在一些细菌,(如栖热袍菌)中发现了和古菌类似的基因,使这些关系变得复杂起来。一些人认为真核生物起源於一个古菌和细菌的融合,二者分别成为细胞核和细胞质。这解释了很多基因上的相似性,但在解释细胞结构上存在困难。
有22个古菌基因组已经完全结束了测序,另外15个的测序工作正在进行中。
代表性古核生物
极端嗜热菌(themophiles):能生长在90℃以上的高温环境。如斯坦福大学科学家发现的古细菌,最适生长温度为100℃,80℃以下即失活,德国的斯梯特(K. Stetter)研究组在意大利海底发现的一族古细菌,能生活在110℃以上高温中,最适生长温度为98℃,降至84℃即停止生长;美国的J. A. Baross发现一些从火山口中分离出的细菌可以生活在250℃的环境中。嗜热菌的营养范围很广,多为异养菌,其中许多能将硫氧化以取得能量。
极端嗜盐菌(extremehalophiles):生活在高盐度环境中,盐度可达25%,如死海和盐湖中。
极端嗜酸菌(acidophiles):能生活在pH值1以下的环境中,往往也是嗜高温菌,生活在火山地区的酸性热水中,能氧化硫,硫酸作为代谢产物排出体外。
极端嗜碱菌(alkaliphiles):多数生活在盐碱湖或碱湖、碱池中,生活环境pH值可达11.5以上,最适pH值8~10。
产甲烷菌(metnanogens):是严格厌氧的生物,能利用CO2使H2氧化,生成甲烷,同时释放能量。 CO2+4H2→CH4+2H2O+能量。
由于古核生物所栖息的环境和地球发生的早期有相似之处,如:高温、缺氧,而且由于它在结构和代谢上的特殊性,它们可能代表最古老的细菌。它们保持了古老的形态,很早就和其它细菌分手了。所以人们提出将古细菌从原核生物中分出,成为与原核生物(即真细菌eubacteria)、真核生物并列的一类。
嗜热细菌
嗜热细菌只有在高温下才能良好地生长。迄今为止已分离出50多种嗜热细菌。在这些细菌中有一种最抗热的菌株(Phyolobous fumarii),在105℃繁殖率最高,甚至在高达113℃也能增殖。深海极端嗜热和产甲烷细菌,备受人们关注,因为它位于生命进化系统树的根部附近,对它进行深入研究,可能有助于我们弄清世界上最早的细胞是如何生存的问题。有人认为嗜热细菌生存的极限温度可能是150℃,若超过这一温度,无论哪种生命形式都不可避免地使维持DNA和其他重要的生命大分子完整性的化学键遭到破坏。PCR(多聚酶链反应)中所使用的Taq酶就是从T.aquaticus嗜热细菌中分离到。现又从Pyrococcus furiosus分离一种Pfu聚合酶取代了Taq酶,Pfu酶在100℃时能最好地发挥作用。
嗜盐细菌
它能在极端地盐环境下生长和繁殖,特别是在天然地盐湖和太阳蒸发盐池中生存。由渗透势原理可知,高盐溶液中的细胞将失去更多的水分,成为脱水细胞。而嗜盐细菌可产生大量的内溶质或保留从外部取得溶质的方式来维持自身的生存,如嗜盐杆菌(Halobacterium salinarum)在其细胞质内浓缩了高浓度氯化钾,其中有一种酶只有在高浓度的氯化钾中,才有活性,才能发挥其功能。而与环境中盐类接触的盐杆菌,其细胞质中的蛋白质需要有高浓度的氯化钠才能发挥作用。
历史
古核生物这个概念是1977年由Carl Woese和George Fox提出的,原因是它们在16SrRNA的系统发生树上和其它原核生物的区别。这两组原核生物起初被定为古细菌(Archaebacteria)和真细菌(Eubacteria)两个界或亚界。Woese认为它们是两支根本不同的生物,于是重新命名其为古菌(Archaea)和细菌(Bacteria),这两支和真核生物(Eukarya)一起构成了生物的三域系统。70年代末,沃斯等人用他们独创的技术分析了200多种细菌和真核生物(包括其中的某些细胞器)的16S(或18S)核糖体核糖核酸(rRNA)的寡核苷酸谱,结果将生物分为3大类群:真核生物、真细菌和古细菌。古细菌包括3类不同的细菌:产甲烷细菌、极端嗜盐细菌和嗜酸嗜热细菌。它们生存在极端特殊的生态环境中,具有独特的16S核糖体RNA寡核苷酸谱。而且,它们在分子水平上与真核生物和真细菌都有不同之处或只与其中之一相同。例如,极端嗜盐细菌能行,但其光合作用色素并非叶绿素类的分子,而是与动物视网膜上的视紫红质相似的视紫红质。
原来以为有细胞形态的生物只有原核细胞和真核细胞两大类。自从发现古细菌以后,才将生物分为上述3大类,这就为探索生命起源和真核细胞起源提供了新的线索。
古菌、细菌和真核生物
在细胞结构和代谢上,它在很多方面接近其它原核生物。然而在基因转录这两个分子生物学的中心过程上,它们并不明显表现出细菌的特徵,反而非常接近真核生物。比如,它的转译使用真核的启动和延伸因子,且转译过程需要真核生物中的TATA框结合蛋白和TFIIB。它还具有一些其它特徵。与大多数细菌不同,它们只有一层细胞膜而缺少肽聚糖细胞壁。而且,绝大多数细菌和真核生物的细胞膜中的脂类主要由甘油酯组成,而它的膜脂由甘油醚构成。这些区别也许是对超高温环境的适应。它鞭毛的成分和形成过程也与细菌不同。
基于rRNA序列的系统发生树,显示了可明显区别的三支:细菌(Bacteria)、古菌(Archaea)和真核生物(Eukarya)。
与真细菌主要区别
1、形态学上,古细菌有扁平直角几何形状的细胞,而在真细菌中从未见过。
2、中间代谢上,古细菌有独特的辅酶。如产甲烷菌含有F420,F430和COM及B因数。
3、有无内含子(introns)上,许多古细菌有内含子。
4、膜结构和成分上,古细菌膜含醚而不是酯,其中甘油以醚键连接长链碳氢化合物异戊二烯,而不是以酯键同脂肪酸相连。
5、呼吸类型上,严格厌氧是它的主要呼吸类型。
6、代谢多样性上,单纯,不似真细菌那样多样性。
7、在分子可塑性(molecular plasticity)上,比真细菌有较多的变化。
8、在进化速率上,比真细菌缓慢,保留了较原始的特性。
参考资料
最新修订时间:2023-07-05 07:43
目录
概述
简介
参考资料