周宁水电站
福建省周宁县水电站
周宁水电站,位于福建省宁德市周宁县境内,为穆阳溪梯级开发的第二级引水式电站,坝址以上控制流域面积为511平方公里,水库总库容为4700万立方米,引水隧洞长12.307km,水头438m,电站装有两台单机容量为125MW的高水头水轮发电机组,总装机容量为250MW,多年平均发电量为6.58亿kW·h,保证出力81MW,年利用小时2632h。
电站简介
周宁水电站位于福建省周宁县,属穆阳溪第二梯级电站,枢纽主要由坝高72.4m的碾压混凝土重力坝、长12.36km的引水隧洞以及高压竖井、压力管道地下厂房洞室群和地面式升压开关站等主要建筑物组成。水库库容0.47亿立方米,总装机容量2×12.5万kW。工程总投资为12亿元人民币。
电站引水高压竖井由上部调压井(EL634~EL560)和下部的竖井(EL180.75~EL560.00)组成,总高为453.25m。引水隧洞轴线高程为EL560.00,调压井设计开挖直径为8.9m;竖井设计开挖直径有5.7m和5.9m,竖井下部接高压管道下平段;鉴于竖井开挖及后续项目施工安全的需要,将引水高压竖井井壁统一增加5cm厚C20素砼作为临时支护,相应开挖断面直径增大10cm;为保证工期及施工方便在竖井中部设一竖井施工支洞,分岔进入竖井。电站枢纽由拦河坝、泄洪建筑物、输水系统、地下厂房洞群及开关站等建筑物组成。该电站工程有长达14KM的引水隧洞,垂直高度450米的高压竖井和单机容量125MW、额定水头400m、额定转速428.6r/min的高水头、高转速、大容量水轮发电机组,工程建设难度大。电站主体工程于2001年12月开工,2004年7月29日下闸蓄水。两台机组于2005年4月投产发电。
建筑组成
电站枢纽由拦河坝、泄水建筑物、输水系统、地下厂房及地面开关站等建筑物组成。拦河坝为碾压混凝土重力坝,最大坝高72.40m,坝顶高程634.40m,坝顶长206m,坝顶宽7.50m,坝体上游面垂直,挡水坝段下游面坝坡1:0.72。溢流坝段位于大坝中部,堰顶高程621m,设3个溢流表孔及3扇12m×12m弧形闸门,实用堰下接1:0.7坝坡,挑流反弧半径为20m,挑射角28°。
引水系统布置在右岸,由发电进水口、引水隧洞、上游调压井、高压竖井及管道、钢筋混凝土岔管等组成。发电进水口为岸塔式结构,由拦污栅、喇叭段、闸室和渐变段组成,进口底板高程598m,检修平台高程635m,进水口设三扇拦污栅和一扇孔口尺寸为5×6m事故门。引水隧洞开挖洞径6.80m,底坡i=3.42‰,隧洞大部分不衬砌,部分采用钢筋混凝土衬砌和锚喷支护。高压管道由上游调压井、高压竖井、高压水平段、岔管和钢支管段组成。高压竖井与调压井采用通天布置,调压井上室高8m、井筒高71.05m,开挖直径8.90m,衬后内径7.70m;高压竖井高381.60m,衬后内径4.7m,总井高452.65m。调压井设有5×5m事故门,其最高涌浪水位640.45m,最低涌浪水位567.77m。高压下平段长152.48m,高压岔管长12m,采用“Y”型对称岔。竖井、下平段及岔管均采用C30钢筋混凝土衬砌。岔管最大静水压力水头450m,主管衬后直径4.70m,支管衬后直径2.70m。岔管后接长16m的钢筋混凝土支管,钢支管长89.3m,为16Mn钢,其管壁厚48~50mm。
工程地质
竖井的主要岩石为燕山晚期侵入的钾长(晶洞)花岗岩,饱和极限抗压强度弱风化岩石为80~140mpa、微风化~新鲜岩石为100~170mpa;地下水位高程为EL523m,隧洞围岩相对不透水,岩体微风化~新鲜,岩体中高倾角65°~90°的裂隙发育,充填高岭土、铁锰质及硅质脉,宽0.5~1cm,多呈薄片状,岩体较完整.高程EL308m~EL305m有F60(NE60°NW∠80°)断层通过。断层及破碎带岩体为Ⅲ~Ⅳ类岩体。在EL488m、、EL425m、EL409m~EL405m等风化夹层,倾角55°~75°,宽1~3cm、岩体破碎,有夹层处围岩为Ⅳ类。EL382m处有一细粒花岗斑岩脉通过、倾角20°~40°,宽80cm,与围岩接触较好。EL223m处有一辉绿岩脉通过,倾角35°宽50cm,与围岩接触较好,除有夹层和断层破碎带通过的竖井段外,其它竖井段围岩中等~完整,属ⅠⅡ类围岩,属中等地应力地区。
施工方法
根据引水高压竖井结构特点、岩石及地质情况,结合本工程主体建筑物的布置与结构型式,类似工程的施工经验,竖井施工的施工机械,重点从以下几个方面与常用的施工方法进行比较,再确定总体施工方法。
深井通风与除尘问题
通风与除尘是排除炮烟粉尘及有害气体,改善施工环境,保障施工人员身体健康,缩短循环时间,加快施工速度的重要工序。隧洞通风主要以机械通风为主。但对于高达453.25m深井的通风与除尘问题将面临着极大的困难。因此施工中选择一种尽量使用自然风与机械通风来进行通风与除尘以改善施工环境的施工方法是必不可少的考虑因素。
深井施工的安全问题
安全是每个职工的生命,因此每个工程队伍都必须将“施工安全”放在首要位置。但在开挖施工中常用的机械设备是手风钻,工作人员必须进入工作面打眼放炮,受有害气体、塌方、落石、淋水的危害,安全很难保证,伤亡事故经常发生。尤其是对较深井更是难以保证施工的安全。因此,选择一种能保证施工安全的先进设备是很有必要的。
深井施工的交通和设备配置
周宁水电站引水高压竖井在同一个投影面上,工作面狭窄,如何合理的设置施工通道和配置设备是加快施工进度,缩短建井周期,增强效益的关键。
进度分析:根据本工程的工期要求及施工特点,引水隧洞、高压竖井、高压管道下平段的施工工期为2001年12月15日开工至2004年8月1日支洞封堵结束,具备充水调试条件。总工期为(19个月零17天),高压竖井的开挖施工工期只能为8个月;后来业主要求将工期提前3个月,相应的竖井开挖工期缩短,因此,要满足进度要求,必须采取合理的施工方法。
技术经济效果
作为施工企业,经济效益是首先考虑的前题。较优的施工方案应当是辅助工程量小,设备简单、施工安全、施工速度快。在深井的反井施工中有普通法掘进反井法、吊罐反井法、爬罐法掘进反井法及反井钻井法;普通法掘井反井法虽然有辅助工程量小,与其它作业相互影响小,不需要大型提绞设备等的优点,但是工作人员爬梯子上下困难、劳动强度大、材料运输不方便、坑木消耗量大、通风条件差、工作面易聚有害气体、在地质水文地质条件较差时影响作业的安全。尤其在较高竖井施工中更为困难;吊罐反井法与普通法比较有工效高、速度快、劳动强度较低、施工经济等优点,但它事先需要钻机打精度较高的绳眼,前期准备时间较长、通风条件差、工作面易聚有害气体,影响作业和安全,随着掘井深度的延深,辅助时间加长,施工速度明显减慢。难以保证施工安全及进度;爬罐反井法与吊罐反井法比较类似,具有工效高、速度快、劳动强度低的优点,但是设备投资较大,通风条件差,工作面易聚有害气体,影响作业和安全,随着掘井深度的延深,辅助时间较长,施工速度明显减慢。反井钻井法较普通法和吊罐法的设备投入大,施工成本相对较高,但反井钻井法有工作效率高、施工安全、劳动强度低、工程质量好,因此钻机的高可靠性和安全性仍能保证在恶劣地质条件下以及深孔反井施工的经济性和高效性。
采用反井法施工导井
深井按施工方式可分为两大类,即人们所说的正井法和反井法。正井法是自上而下凿井,最常用的办法是采用人工或机械打眼放炮,人工装岩或抓斗抓岩,吊桶出碴,对于特殊地层也可以使用特殊方法,包括钻井法冻结法、帷幕法和注浆法等,有时几种方法同时使用。反井法是自下而上凿井,其施工方法有普通法、吊罐法、爬罐法和钻井法。采用反井法施工导井,利用导井的通风、排水和溜矸(排渣)等作用;利用反井法施工深井较正井法施工导井设备投入少、速度快、综合经济效益高。
分段平行立体作业施工技术
高压引水竖井成900角直立形,工作面狭窄,如何合理分段进行立体平行作业法施工是加快施工进度的关键。根据竖井的结构特点,原设计有三个通道,为了保证工期,经专家咨询,增加一个施工支洞,分两个洞口进入竖井,共形成五个通道。开挖期,Ⅲ段与Ⅰ段同步施工,Ⅲ段与Ⅱ段同步施工,以岩塞段进行分隔,Ⅱ段导孔井施工与上游闸门井同步施工进行分隔。开挖与砼交叉期,Ⅰ段砼与Ⅱ段开挖同步,Ⅱ段开挖与Ⅲ段砼同步,Ⅱ段开挖完成,Ⅲ段砼完成后进行岩塞段开挖采用从竖井旁洞出渣。
井内交通运输系统及安全系统
较深竖井主要解决的是人员的上下交通、材料运输及安全通道问题。
人员和材料运输设置一个无轨吊篮,在吊蓝两侧设一稳定钢绳,钢绳下部设配重(500KG),设专用卷扬机,在吊蓝上设捕绳器(bf-111型),并从煤矿行业引进先进技术,在上井架上设缓冲器,以解决瞬间制动后人员材料的缓冲击。在井的一侧设置安全爬梯。每24m设置一个休息平台,每12m设一个休息防护罩。并每24m作一个交错。交错上方设置防护顶,作为紧急安全通道。安全系统主要是设备的安全和控制、信号系统,主要设备安全是卷扬机的运行速度(4~8m/h),制动系统为自动和手动结合。控制信号为电铃灯光两个并联,安排专人管理,控制线与吊篮同步下井,由井内人员控制信号,井口值班人员操作,信号为井内外双向互动,控制电压为36V,并在钢绳上设到位标志。各工作面间的通讯连接采用内部自动电话。
反井钻机施工技术
高压引水竖井属于较深的深井,施工难点主要是导井的施工,经过安全、技术、进度及经济比较100m以上竖井选型采用LM-200型反井钻机。使用反井钻施工,先导孔的质量是整个竖井成型的关键,所以反导井施工的关键是如何解决先导孔偏差问题,由于周宁水电站竖井岩体为高倾角80°,倾向与引水洞轴呈30°,在竖井Ⅲ段第一次先导孔施工中,偏差>2%,而设计要求的先导孔偏差≤1%,因此作为废孔。分析主要有不良地质段,层间软弱地质带出现,抗压强度差别大,是造成偏差的一个原因;安装精度,开孔段和不良地质段的造孔速度是另一个原因;合理加设稳定钻杆,合理控制钻进速度是第三原因,根据第一次钻孔的偏差情况,第二次钻孔时向倾向方人为移动700mm。成孔后,偏差为1.1%,有人为移动,达到设计要求,Ⅰ段与Ⅱ段岩性相对均一,一次施工精度达设计要求。
主要采取的纠偏措施
安装钻机精度控制在0.15%以内;先导孔施工时,孔口30m,用1~3m/天的钻进速度;钻杆前30m增加稳定钻杆数量,前5m各一根,之后3:1到5:1最后到10:1;合理采用钻压转速,并在开孔时采用扶正器等方法。各段的反导井施工结束后,结合竖井的结构和反井钻导井尺寸,根据以往的经验,并通过爆破试验,φ6.0m井采用导井从φ1.4m先进行一次刷井,扩大到φ2.5m,再进行全断面扩挖和支护。全断面一次从φ1.4刷大到设计断面。
测量控制
溜渣导井扩挖规格线控制:从洞外控制网经测量导线引控制点到井口附近,在井口处搭设一过竖井中心的工字钢支架,在支架的中心固定一个能垂直升降的垂球,以较正竖井中心线用,由于是中导洞,开挖规格要求不高,不再进行精确放线。
设计轮廓扩挖规格线控制
从洞外控制网经测量导线引控制点到井口附近,竖井井口15m以上扩挖井口井架未安装前,制作垂直移动控制点,用垂球把控制点引在开挖掌子面放线。井口15m以下扩挖待井口井架安装到位后,把井口控制点引到井架上,在井架上做好激光准直仪支座,再把激准直仪固定在支座上,进行校核合格后再用激光束导向,井下用钢尺放样,并定期检查准直仪的精度,同时检查上一排炮的超欠挖情况。
钻孔:扩挖均采用人工手风钻钻孔
装药与起爆
将火工材料用吊笼运到工作面,人工装药联线,孔内用秒延时非电雷管,孔外用火雷管引爆非电,用36V电线带电炉丝缠在导火索上在孔口点火。
出渣:人工将工作面松渣全部扒下导井后,盖好下料导井井盖出渣,用装载机配合自卸车在下部施工支洞出渣。
竖井I段扩挖
竖井I段总高71米,开挖直径为8.9米,反井钻形成的导孔中心与I段中心向下游侧偏心1.55米,根据以往工程的经验,进行扩挖爆破试验,井口以下20M范围内为爆破试验段,因爆破试验段围岩稳定性的实际情况不定,在该段的施工中只能暂按设计提供的围岩类别结合施工规范及相关的施工经验进行试验性的开挖施工,以尽可能的减少对围岩不必要的振动影响,同时不发生导井堵塞现象为标准,不断调整爆破参数。 第一排炮先直接利用φ1.4m导井作为溜渣通道,进行全断面扩挖,布孔间排距为60~75cm,用秒延时非电雷管引爆,放炮后,导井被堵,经放炮震动仍未能贯通,用反铲扒开后发现,堵塞导孔的石渣块径为45~55cm之间,3~4块相互交叉,分析有以下几点原因:溜渣导井偏小;导孔偏心对溜渣影响较大;分段延时不够长,单响爆破方量较大。
竖井II段扩挖
竖井II段总高177米,开挖直径为5.9米,扩挖时直接利用反导井孔,不再扩大溜渣孔,直接全断面一次钻爆的方式开挖,为保证爆破粒径达到0.25D的要求,(D为导孔直径),减少导孔堵塞的可能性,孔深不得大于2.0m,为加快施工进度,施工中经过多次试验调整,确定单循环孔深为2.5米。临时支护:导孔扩挖时,一般情况下不作支护,必要时采用短锚杆支护;全断面扩挖,根据开挖出露地质情况,确定2~3个单元开挖后再进行支护。根据不同类别的围岩,支护参数各不相同,Ⅲ类、Ⅲ-Ⅳ类围岩,井壁采用Ф25,L=300cm锚杆及素喷C30厚10cm相结合的方法;若遇Ⅴ类围岩将加长锚杆到400cm,再挂Ф6.5@25cm×25cm钢筋网喷C30砼15cm的方法,以确保施工安全。锚杆施工采用手风钻造孔,普通水泥砂浆袋加早强剂注浆,人工安装锚杆。喷砼采用干喷法施工,上部80m采用喷射管入井,下部采用把喷射机运到井底,再用吊盘运输半成品料喷护的方法,在吊篮中喷射,并在井内设一风扇加强通风
防堵井措施
在施工过程中,通过对竖井各段的施工,均发生大小不同的多次堵井,给进度及施工安全影响很大。竖井I段在开始扩挖施工中,首先选用φ1.4导井直接作为溜碴井,全断面一次从φ1.4m刷大到φ9.0m,放炮后,块径大、碴量多,溜碴井堵塞可能性大大增加,在井口部位出现导井堵塞现象,后来采用先将导井直径刷大到φ3.0m,再从φ3.0m刷大到φ9.0m,未出现堵孔现象。竖井III刷大开挖,总结竖井I段刷大开挖经验后,先将导井从φ1.4m刷大开挖到φ2.5m,再从φ2.5m扩大到设计规格线,在扩挖过程中,从未发生过堵井现象。
竖井II段的扩挖,因采用全断面一次刷大的方法,直接利用φ1.4m反导井作为溜渣井,与竖井III段相比较,采取了降低单循环钻孔深度,减小炮孔间排距,达到最终减小爆破粒径的目的,但在施工过程中,第一、二排炮扩挖时,因炮孔间排距未严格控制,爆破粒径太大,造成导井上口堵塞,经过调整后,未出现上口堵塞现象;因导井下部容渣量较小,出渣不及时,造成导井下口堵塞三次,给工程带来较大的难度,处理时安全隐患极大,且影响施工进度。
枢纽设计
电站枢纽由拦河坝、泄水建筑物、输水系统、地下厂房及地面开关站等建筑物组成。拦河坝为碾压混凝土重力坝,最大坝高72.40m,坝顶高程634.40m,坝顶长206m,坝顶宽7.50m,坝体上游面垂直,挡水坝段下游面坝坡1:0.72。溢流坝段位于大坝中部,堰顶高程621m,设3个溢流表孔及3扇12m×12m弧形闸门,实用堰下接1:0.7坝坡,挑流反弧半径为20m,挑射角28°。引水系统布置在右岸,由发电进水口、引水隧洞、上游调压井、高压竖井及管道、钢筋混凝土岔管等组成。发电进水口为岸塔式结构,由拦污栅、喇叭段、闸室和渐变段组成,进口底板高程598m,检修平台高程635m,进水口设三扇拦污栅和一扇孔口尺寸为5×6m事故门。引水隧洞开挖洞径6.80m,底坡i=3.42‰,隧洞大部分不衬砌,部分采用钢筋混凝土衬砌和锚喷支护。高压管道由上游调压井、高压竖井、高压水平段、岔管和钢支管段组成。高压竖井与调压井采用通天布置,调压井上室高8m、井筒高71.05m,开挖直径8.90m,衬后内径7.70m;高压竖井高381.60m,衬后内径4.7m,总井高452.65m。调压井设有5×5m事故门,其最高涌浪水位640.45m,最低涌浪水位567.77m。高压下平段长152.48m,高压岔管长12m,采用“Y”型对称岔。竖井、下平段及岔管均采用C30钢筋混凝土衬砌。岔管最大静水压力水头450m,主管衬后直径4.70m,支管衬后直径2.70m。岔管后接长16m的钢筋混凝土支管,钢支管长89.3m,为16Mn钢,其管壁厚48-50mm。
高压引水竖井施工技术
周宁水电站引水竖井总高453m,施工难度大、技术要求高。为此,对周宁水电站高压引水竖井工程的施工技术进行了研究,对竖井施工采取的技术、安全技术、质量成果的可行性进行了验证。结果表明,竖井人员、材料与混凝土运输安全系统,防坠安全技术、无轨防旋转控制技术、施工与运输的配合技术,很好地解决了长竖井施工技术难点,安全保障大大提高,且成本低、工艺简单、推广性很强;滑模技术的应用、反井钻机的应用、喷锚支护技术的应用,使竖井施工的各大危险源得到了全面有效的控制,实现了竖井施工零事故。
运行效能
周宁水电站主体工程开工建设以来,闽东水电公司强化工程建设管理,各参建单位密切配合,施工过程采用了许多新材料、新工艺、新技术,并坚持不断地进行技术管理创新,缩短了工程建设工期,有效提高工程质量。经过三年来的运行实践表明,周宁电站大坝、引水系统、厂房等部位的闸门、金属结构、启闭机系统、监控系统等主要设备制造与安装符合设计要求,质量优良,运行稳定。安全监测资料表明水工建筑物运行安全可靠,满足设计要求。电站投产发电以来,累计发电量达24亿度,为振兴闽东老区经济发展做出了贡献。
周宁水电站荣获“2008年度中国电力优质工程”奖,成为华电在闽企业中唯一获此殊荣的单位,是我国电力建设行业工程质量的最高荣誉奖。
周宁水电站主体工程开工建设以来,闽东水电公司强化工程建设管理,各参建单位密切配合,施工过程采用了许多新材料、新工艺、新技术,并坚持不断地进行技术管理创新,缩短了工程建设工期,有效提高工程质量。经过运行实践表明,周宁电站大坝、引水系统、厂房等部位的闸门、金属结构、启闭机系统、监控系统等主要设备制造与安装符合设计要求,质量优良,运行稳定。安全监测资料表明水工建筑物运行安全可靠,满足设计要求。电站投产发电以来,累计发电量达24亿度,为振兴闽东老区经济发展做出了贡献。
参考资料
最新修订时间:2024-12-27 10:28
目录
概述
电站简介
参考资料