设函数y=f(u)的定义域为Du,
值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种
函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为
因变量(即函数)。
定义
设y是u的函数,u是x的函数,如果的值全部或部分在的定义域内,则y通过u成为x的函数,记作,称为由函数与复合而成的复合函数。
如等都是复合函数。
而就不是复合函数,因为任何x都不能使y有意义。由此可见,不是任何两个函数放在一起都能构成一个复合函数。
复合函数通俗地说就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。复合函数中不一定只含有两个函数,有时可能有两个以上,如y=f(u),u=φ(v),v=ψ(x),则函数y=f{φ[ψ(x)]}是x的复合函数,u、v都是中间变量。
定义域
若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的
取值范围,取他们的
交集。
求函数的定义域主要应考虑以下几点:
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为
指数式时,对零指数幂或负整数
指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的
自变量的值组成的
集合,即求各部分定义域集合的交集。
⑹
分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
⑻对于含参数
字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
周期性
设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)。
单调(增减)性
决定因素
依y=f(u),u=φ(x)的
单调性来决定。即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
基本步骤
判断复合函数的单调性的步骤如下:
⑴求复合函数的定义域;
⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
⑸求出复合函数的单调性。
例题
令u=x2-4x+3,y=0.8u;
u=x2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是
增函数;
∴ 函数y= 在(-∞,2]上是增函数,在[2,+∞)上是减函数。
复合函数求导
规则
复合函数求导的前提:复合函数本身及所含函数都可导。
法则1:设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);
法则2:设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);
应用举例
1、求:函数f(x)=(3x+2)3+3的导数。
解:设u=g(x)=3x+2;
f(u)=u3+3;
f'(u)=3u2=3(3x+2)2;
g'(x)=3;
f'(x)=f'(u)*g'(x)=3(3x+2)2*3=9(3x+2)2;
2、求f(x)= 的导数。
解:设u=g(x)=x-4,a=p(u)=u2+25
f(a)= ;
f'(a)= = ;
p'(u)=2u=2(x-4);
g'(x)=1;
f'(x)=f'(a)*p'(u)*g'(x)= = .