外尔群
具有某种拓扑结构的群
代数群是具有某种拓扑结构的群。代数群理论是群论与代数几何学结合的产物,可以看成李群理论的推广或者同李群理论平行的一个群论分支。
概念
外尔群(Weyl group)是作用在根系上的一种变换群。设L为复半单李代数,h为L的嘉当子代数,Δ为根系,π为单根系。记Δ实线性生成h的对偶空间h之实线性子空间hR,hR中有反射:
其中α∈Δ,(x,y)为L之基灵型。于是{ωα|α∈Δ}生成之群称为L的外尔群。它是有限群,且实际上由wα1,wα2,…,wαl生成,其中π={α1,α2,…,αl}为L的单根系。
一种只有一个运算的、比较简单的代数结构;是可用来建立许多其他代数系统的一种基本结构。
设G为一个非空集合,a、b、c为它的任意元素。如果对G所定义的一种代数运算“·”(称为“乘法”,运算结果称为“乘积”)满足:
(1)封闭性,a·b∈G;
(2)结合律,即(a·b)c = a·(b·c);
(3)对G中任意元素a、b,在G中存在惟一的元素x,y,使得a·x= b,y·a=b,则称G对于所定义的运算“·”构成一个群。例如,所有不等于零的实数,关于通常的乘法构成一个群;时针转动(关于模12加法),构成一个群。
满足交换律的群,称为交换群
群是数学最重要的概念之一,已渗透到现代数学的所有分支及其他学科中。凡是涉及对称,就存在群。例如,可以用研究图形在变换群下保持不变的性质,来定义各种几何学,即利用变换群对几何学进行分类。可以说,不了解群,就不可能理解现代数学。
1770年,拉格朗日在讨论代数方程根之间的置换时,首先引入群的概念,而它的名称,是伽罗华在1830年首先提出的。
代数群
代数群是具有某种拓扑结构的群。代数群理论是群论与代数几何学结合的产物,可以看成李群理论的推广或者同李群理论平行的一个群论分支。若G是代数闭域K上的代数簇,又具有群的结构,且乘法运算G×G→G(这里的“×”表示簇的扎里斯基(Zariski,O.)积)与求逆运算G→G都是簇的态射,则称G为代数群。若G作为簇是不可约的,则称此代数群是连通的。代数群的闭子簇若同时也是个子群,则称为闭子群,它仍是个代数群。代数群关于它的正规闭子群的商群也是个代数群。例如,K上n级一般线性群(K上n级非奇异矩阵全体所成的群)GL(n,K)是代数群;K上n次特殊线性群(K上行列式1的n阶矩阵全体所成的群)SL(n,K)是GL(n,K)的闭子群。若代数群G的簇结构是仿射的,则称G为仿射代数群或线性代数群。采用后一术语的理由是,这种群都同构于某个GL(n,K)的闭子群.若G的簇结构是完备的,则称G为阿贝尔簇。阿贝尔簇的群结构很简单(都是阿贝尔群),且被簇结构惟一决定,因此它的研究属于代数几何学的范畴。另一方面,对任意代数群G,总可以惟一地找到一个正规的仿射闭子群N,使G/N是阿贝尔簇。因此,代数群理论研究的主要是仿射的(即线性的)代数群,并把仿射代数群简称代数群。代数群及其表示理论与域论、多重线性代数、交换环论、代数几何、李群、李代数、有限单群理论以及群表示理论等数学分支都有十分密切的联系,是近年来代数学的一个相当活跃的分支。
变换群
几何学研究的重要对象。即由变换构成的群。设G是集合S的一一变换所构成的集合,若它满足:
1.集合内任二变换之积仍属于这集合;
2.集合内任一变换的逆变换仍属于这集合,
则称G为S的一个变换群。例如,平面上正交变换的全体构成的变换群称为正交群;平面上仿射变换的全体构成的变换群称为仿射群。平面上射影变换的全体构成的变换群称为射影群。在“埃尔朗根纲领”中,变换群可用来对几何学进行分类。
一组变换,对变换的乘积构成的群。设G为M上的有限或无限个变换的集合,若满足下面两个条件:①集合G中任意两个变换的乘积仍属于G;②集合G中每一个变换必有其逆变换,而且这个逆变换也属于G,则称G为M上的一个变换群。
例如,平移变换可以构成一个群:平面上任意两个平移变换的积仍是平移变换;每个平移变换都有逆变换,这个逆变换就是按原变换相反方向的变换,所以仍是平移变换。
用变换群来研究对应的几何学的观点,是由德国数学家克莱茵首先提出来的。1872年,克莱茵在埃尔朗根大学的教授就职演讲中,提出题为《关于近代几何研究的比较》的论文,论述了变换群在几何中的主导作用。他把到当时为止已发现的所有的几何,统一在变换群的观点之下,明确地给出了几何的一种新定义,即把几何定义为在某个变换群之下研究图形不变性质与不变量的一门科学。这种观点突出了变换群在研讨几何中的地位,为用近代数学方法研究几何学开辟了道路,因此后来把它简称为《埃尔朗根纲领》。
按照变换群的观点,几何学可以这样分类:研究射影变换群、仿射变换群相似变换群正交变换群下不变性质和不变量的几何学分别是射影几何学仿射几何学、抛物几何学、欧氏几何学.正交变换群也称为运动群,欧氏几何学的主要内容就是研究运动群下不变性质和不变量的几何学.近代发展很快、应用越来越广的一门学科——拓扑学,就是研究拓扑变换下不变性质和不变量的几何学。
半单李代数
半单李代数是一类重要的李代数。设L为域F上的李代数,R为L的根基。若R={0},则L称为半单李代数。在L是复李代数时,若L为有限维李代数,则在L中必存在半单子代数C,使得L=C+R为空间直和,其中R为L的根基,这个分解称为列维分解,它不惟一.列维分解指出,要弄清楚一般李代数的结构,必须弄清楚可解李代数和半单李代数的结构。关于可解李代数,知道得甚少,但是复半单李代数的结构是非常清楚的。
嘉当李代数
研究李代数分解时常用的一类子代数。设L为域F上的李代数,若L的子代数h是极大幂零子代数,且它的正规化子N(h)={x∈L|[x,h]h}等于h自身,则称它为L的嘉当子代数。当L为有限维复李代数时,嘉当子代数必存在,且对任意两个嘉当子代数h1和h2,必存在L的内自同构σ,使得σ(h1)=h2,即h1和h2是共轭的。在实的情形下,这个性质不成立。当L为有限维实或复半单李代数时,嘉当子代数必为极大交换子代数。
参考资料
最新修订时间:2022-08-25 13:36
目录
概述
概念
参考资料