多项式除法
除法的一种类型
除法的一种类型,俗称「长除」。适用于整式除法、小数除法、多项式除法(即因式分解)等较重视计算过程和商数的除法,过程中运用了乘法和减法。是代数中的一种算法,用一个同次或低次的多项式去除另一个多项式。是常见算数技巧长除法的一个推广版本。它可以很容易地手算,因为它将一个相对复杂的除法问题分解成更小的一些问题。
一般步骤
多项式除以多项式一般用竖式进行演算:
(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.
(2)用被除式的第一项除以除式第一项,得到商式的第一项.
(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.
(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式。若余式为零,说明这个多项式能被另一个多项式整除
举例
计算
把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐,写成以下这种形式:
然后商和余数可以这样计算:
横线之上的多项式即为商,而剩下的 (这个例子中没有) 就是余数。
算数的长除法可以看做以上算法的一个特殊情形,即所有 x 被替换为10的情形。
整除
如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除
应用
多项式的因式分解
有时某个多项式的一或多个根已知,可能是使用有理根定理(Rational root theorem) 得到的。如果一个次多项式 的一个根已知,那么可以使用多项式长除法因式分解为的形式,其中是一个次的多项式。简单来说,就是长除法的商,而又知是的一个根、余式必定为零。
相似地,如果不止一个根是已知的,比如已知和这两个,那么可以先从中除掉线性因子得到,再从中除掉 ,以此类推。或者可以一次性地除掉二次因子。
使用这种方法,有时超过四次的多项式的所有根都可以求得,虽然这并不总是可能的。例如,如果 有理根定理(Rational root theorem)可以用来求得一个五次方程的一个(比例)根,它就可以被除掉以得到一个四次商式;然后使用四次方程求根的显式公式求得剩余的根。
寻找多项式的切线
多项式长除法可以用来在给定点上查找给定多项式的切线方程。[2] 如果 R(x) 是 P(x)/(x-r)2 的余式——也即,除以 x2-2rx+r2——那么在 x=r 处 P(x) 的切线方程是 y=R(x),不论 r 是否是 P(x) 的根。
参考资料
最新修订时间:2024-04-03 16:26
目录
概述
一般步骤
举例
参考资料