半径
数学几何中的术语
在古典几何中,或圆的半径是从其中心到其周边的任何线段,并且在更现代的使用中,它也是其中任何一个的长度。 这个名字来自拉丁半径,意思是射线,也是一个战车的轮辐。半径的复数可以是半径(拉丁文复数)或常规英文复数半径。半径的典型缩写和数学变量名称为r。 通过延伸,直径d定义为半径的两倍:d=2r。所以说,半径是指连接圆心圆周上任意一点或球心球面上任意一点的直线
简介
如果物体没有中心,则该术语可能指其周长,其外接圆的半径或外接球体。 在任一情况下,半径可以大于直径的一半,通常将其定义为图中任何两个点之间的最大距离。 几何图形的半径通常是其中包含的最大圆或球的半径。 环,管或其他中空物体的内半径是其空腔的半径。
对于常规多边形,半径与其周长相同。正多边形的内半径也称为心距。在图论中,图的半径是从u到图的任何其他顶点的最大距离的所有顶点u的最小值。
具有周长(圆周)C的圆的半径为:
或者,这可以表示为
τ等于2π,尽管这还没有获得主流使用。
在坐标系中使用
极坐标
极坐标系是二维坐标系,其中平面上的每个点由固定点的距离和与固定方向的角度确定。
固定点(类似于笛卡尔系统的原点)被称为极点,固定方向的极点的射线是极坐标轴。距离极点的距离称为径向坐标或半径,角度为角坐标,极角或方位角。
圆柱坐标
在圆柱坐标系中,有一个选择的参考轴和垂直于该轴的选定的参考平面。系统的起点是所有三个坐标可以给出为零的点。这是参考平面和轴之间的交点。
轴被不同地称为圆柱形或纵向轴线,以便将其与位于参考平面中的射线(从原点开始并指向参考方向)区分开。
与轴的距离可以称为径向距离或半径,而角坐标有时称为角位置或方位角。半径和方位角共同称为极坐标,因为它们对应于平面中平行于参考平面的平面中的二维极坐标系。第三个坐标可以称为高度或高度(如果参考平面被认为是水平的),纵向位置或轴向位置。
球面坐标
在球面坐标系中,半径表示点与固定原点的距离。如果进一步由在径向和固定天顶方向之间测得的极角以及方位角(即通过原点的参考平面上的正交投影的正交投影之间的角度)正交的位置,到天顶,并在该平面上固定参考方向。
性质
性质一:
在同一个圆中直径的长度是半径的2倍,可以表示d=2r或r=d/2
证明:设有直径AB,根据直径的定义,圆心O在AB上。∵AO=BO=r,∴AB=2r
并且,在同一个圆中弦长为半径2倍的弦都是直径。即若线段d=2r(r是半径长度),那么d是直径。
反证法:假设AB不是直径,那么过点O作直径AB',根据上面的结论有AB'=2r=AB
∴∠ABB'=∠AB'B(等边对等角
又∵AB'是直径,∴∠ABB'=90°(直径所对的圆周角是直角)
那么△ABB‘中就有两个直角,与内角和定理矛盾
∴假设不成立,AB是直径
性质二:
在同一个圆中直径是最长的弦。
证明:设AB是⊙O的直径,CD是非直径的任意一条弦,则可证明AB>CD恒成立。
连接OC、OD,根据圆的定义,OA=OB=OC=OD=半径
∵CD不是直径
∴CD不经过圆心O,即O、C、D三点可以构成三角形
在△OCD中,根据三角形三边关系可知OC+OD>CD
∵OA=OB=OC=OD
∴OA+OB>CD
即AB>CD
参考资料
最新修订时间:2023-07-25 16:36
目录
概述
简介
在坐标系中使用
参考资料