以
实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是
微积分学的进一步发展,它的基础是点集论。所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、
序列、
极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括
实值函数的连续性质、微分理论、积分理论和
测度论等。
定义
实变函数是自变量取实值的函数。以实变函数作为研究对象的数学分支就叫做实变函数论。
产生
微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,使它很快就形成了数学中的一大部门,也就是
数学分析。
也是在那时,数学家逐渐发现分析基础本身还存在着许多问题。比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。又如,对于什么是连续性和
连续函数的性质是什么,数学界也没有足够清晰的理解。
十九世纪初,曾经有人试图证明任何连续函数除个别点外总是
可微的。后来,德国数学家
维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都没有
导数。这个证明使许多数学家大为吃惊。
由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不
黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家考虑,我们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的
充分必要条件又是什么样的?……
上面这些
函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。
实变函数论
简介
实变函数论是以实变函数作为研究对象的数学分支,是数学分析的深入与推广,研究函数的表示与逼近问题以及它们的局部与整体性质。在经典分析中主要研究具有一定阶光滑性的函数。但在 19 世纪下半叶,一些问题被明确提出,期望能解答并涉及更宽泛的函数类。
问题
在这些问题中必须提到的有集合的测度,曲线长度与曲面面积,原函数与积分,积分与微分的关系,级数的逐项积分与微分,由极限过程得到的函数的性质等。这些问题的解决对数学发展至关重要,但又非经典分析所能。直至 19 世纪末 20 世纪初,在集合论的基础上,这些问题才得以解决,同时也完成了现代实变函数论基础的建立。
内容
现代实变数理论着重于广泛应用集合论方法,通常分以下三部分:
①描述性理论。研究由极限过程得到的某些函数类的性质。
② 度量理论。研究以集合的测度概念为基础的函数性质。
③
逼近理论。例如,连续函数可以用多项式逼近的魏尓斯特拉斯定理。
介绍
实变函数论是微积分学的进一步发展,它的基础是点集论。实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集一个数量上的概念,这个概念叫做
测度。简单地说,一条线段的长度就是它的测度。测度概念对于实变函数论十分重要。集合的测度这个概念是由法国数学家勒贝格提出来的。
为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“
勒贝格测度”、“
勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积
性的问题。
勒贝格积分可以推广到
无界函数的情形,这个时候所得积分是绝对收敛的,后来又推广到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由
柯西给出后来又由
黎曼发扬的积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。
自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式
级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数论的领域里又出现了逼近论的理论。
什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究一类函数用另一类函数来逼近、逼近的方法、逼近的程度、在逼近中出现的各种情况。
和逼近理论密切相关的有
正交级数理论,三角级数就是一种正交级数。和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做
函数构造论。
总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支中的应用是现代数学的特征。
实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的
一般拓扑学和
泛函分析两个重要分支有着极为重要的影响。